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Fluid Kinematics

❑ Study of fluid motion without consideration of forces

Lagrangian – individual fluid particle is selected

Method of Study

Lagrangian Eulerian

Eulerian – any point occupied by fluid is selected
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Velocity of Fluid Particles
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Solids – The body as whole can be considered for 

determination of velocity

Fluids – Motion of fluids can be different at different  

points
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Velocity of Fluid Particles
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V iu jv kw= + +Vector notation

,  and i j k are the unit vectors parallel to X, Y and Z axis



Types of Fluid Flow

➢Steady and unsteady flow

➢Uniform and Non-uniform flow

➢One dimensional, two-dimensional and three

dimensional flow

➢Rotational and Irrotational flow

➢Laminar and Turbulent flow
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Types of Fluid Flow

Steady flow – if at any point in the flow system of a fluid the various

characteristics such as velocity, pressure, density, temperature etc. which

describe the behavior of the fluid flow, do not change with time then the flow

is called steady flow

Unsteady flow - – if at any point in the flow system of a fluid the various

characteristics such as velocity, pressure, density, temperature etc.

which describe the behavior of the fluid flow, change with time then the

flow is called steady flow

0, 0, 0, 0, 0, 0,=  =  =  =  =  =
dV du dv dw dp d

dt dt dt dt dt dt


Mathematically,

0, 0, 0, 0, 0, 0,     
dV du dv dw dp d

dt dt dt dt dt dt


     Mathematically,
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Types of Fluid Flow

Uniform flow – If there is no change in the magnitude and direction of

velocity with respect to space in the flow system i. e velocity does not

change from point to point then the flow is called uniform flow

0, 0, 0, 0=  =  =  =
dV du dv dw

ds ds ds ds
Mathematically,

Non-uniform flow - If the magnitude and direction of velocity changes with 

respect to space in the flow system i. e velocity from point to point is 

different then the flow is called non-uniform flow

0, 0, 0, 0   
dV du dv dw

ds ds ds ds
   Mathematically,
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Types of Fluid Flow

Combination of steady, unsteady, uniform and non-uniform flow is 

possible as these can exist independently

Steady uniform flow

Flow through a long pipe of constant diameter at constant rate

Q = Constant

Flow through a long pipe of constant diameter at varying rate

 ConstantQ 
Unsteady uniform flow
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Types of Fluid Flow

Combination of steady, unsteady, uniform and non-uniform flow is 

possible as these can exist independently

Steady non-uniform flow

Unsteady non-uniform flow

Flow through a tapered pipe at constant rate

Q = Constant

Flow through a tapered pipe at varying rate

 ConstantQ 
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Types of Fluid Flow

Two-dimensional

( , )V f x y=

One-dimensional

( )V f x=

Three-dimensional

( , , )V f x y z=Steady flow 

unsteady flow ( , , , )V f x y z t= ( , , )V f x y t= ( , )V f x t=

One dimensional flow Two dimensional flow

Three dimensional flow



Types of Fluid Flow
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➢Rotational flow – A flow is said to be rotational if the fluid particles 

while moving in the flow direction rotate about their mass centre.

➢Irrotational flow – A flow is said to be rotational if the fluid particles

while moving in the flow direction do not rotate about their mass

centre.

➢The true irrotational flow exits only in the case of ideal fluid for

which no tangential or shear stress occur

➢The flow of low viscosity fluid may be considered as irrotational

flow



❑Laminar flow – The flow is said to be laminar when the various fluid

particles move in layers (or laminae) with one layer of fluid sliding

smoothly over an adjacent layer

❑Viscosity plays a significant role

❑Flow of a viscous fluid may be treated as laminar flow

Types of Fluid Flow

❑ Turbulent flow – The fluid particles move in an entirely haphazard 

or disorderly manner  that results in rapid and continuous mixing of 

fluid leading to momentum transfer as the flow occurs

❑Eddies of vortices of different sizes and shapes are present which 

move over large distances. 

❑These eddies causes fluctuations in velocities and pressures 

which are functions of time
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Types of Fluid Flow

Are all turbulent flows unsteady?

If temporal mean values of velocities and pressure

considered over a large time span are constant then

the turbulent flow can also be considered as a steady

flow

The occurrence of turbulent flow is more frequent 

that laminar flow

Flow in natural streams, artificial channels, water 

supply pipes, sewers etc are the best examples of 

turbulent flow
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Flow Pattern Description
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➢The flow pattern description helps to understand the physical

aspects of flow

➢ It helps to understand the effect of governing parameters such

as geometry of flow system and flow parameters (velocity of

flow, density of fluid, viscosity of fluid etc.) on the flow physics

The flow pattern may be described by

❑Streamlines

❑Stream tubes

❑Streak-lines

❑Path lines

❑Vorticity contours

❑Wake
The vorticity contours and wake structures are being recently used by many

researchers for exploring the physical phenomenon [Sewatkar et al. 2011

(Physics of Fluids) and Sewatkar et al. 2011 (journal of Fluid Mechanics)



Streamlines
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Streamline is an imaginary curve drawn through a flowing fluid

such that a tangent to it at any point gives the direction of the

velocity of flow at that point.



Streamlines
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tan
v dy

u dx
= =

Mathematical representation of streamline

dy and dx are the y and x components

of the differential displacement along

the streamline in the vicinity of P

; ( ) 0 or 
dx dy

udy vdx
u v
= − =

For three dimensional flow

dx dy dz

u v w
= =



Characteristics Streamline
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There can be no component of the velocity at right angles to the

streamline and hence there can be no flow across any

streamline

In steady flow since there is no change in the direction of the

velocity vector at any point, the flow pattern is not changing

In unsteady flow since there is continuous change in the

direction of the velocity vector at all points, the flow pattern is

continuously alters. Hence, the streamline pattern in such a

case is called instantaneous streamline pattern



Streamline Pattern for single Square Cylinder

Steady flow around square cylinder at Re =  20
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Streamline Pattern for single Square Cylinder

Steady flow around square cylinder at Re =  80
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Streamlines Pattern for In-line Square Cylinders



Stream Tube
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➢A stream tube is a tube imagined to be formed by a group of

streamlines passing through a small closed curve, which may or

may not be circular

➢All the characteristics of stream lines are equally applicable to 

stream tube

➢There can be flow in or out at the ends but flow can not be  

across the tube



Path line
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Path line is the line traced by a single fluid particle as it moves over a 

period of time

Path line provides direction of a same fluid particle at different

successive instances, while streamline provides direction of different

fluid particles at same instant

For steady flow path-lines and streamlines are identical



Streak line
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Streak line is the line traced by the fluid particles passing through a 

fixed point in the flow system 

For steady flow streak-lines, path-lines and streamlines are identical

Please refer to the figure discussed on the black board in the 

class



Streak line
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Dye visualization for flow around in-line square cylinders 

at gap ratio = 0.5 and Re = 100



Wake
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Wake is the region in the flow at which the streamwise velocity

is less than free stream velocity (Zdravkovich, 1997)

Flow across single cylinder at Re = 80

Wake



Wake
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Flow across large number of cylinders at Re = 80, (Sewatkar et 

al. 2009, Physics of Fluids)

Gap ratio = 5 Gap ratio = 4



Wake
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Flow across large number of cylinders at Re = 80 (Sewatkar 

et al. 2009, Physics of Fluids)

Gap ratio = 3 Gap ratio = 1



Basic Principles of Fluid Flow
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Principle of Conservation of Mass Continuity Equation

Principle of Conservation of Momentum Momentum Equation

Principle of Conservation of Energy Energy Equation

Fluid Mechanics

Heat Transfer



Continuity Equation

Fixed region

Rate of increase or 
Rate of mass flow Rate of mass flow

decrease of fluid mass 
at the entrance at the exit

within fixed region

 
    

=     
     

Continuity equation is the mathematical expression for law of

conservation of mass
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Continuity Equation in Cartesian Coordinates
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δx

δy

δz

A

B

C

D

A’

B’

C’

D’

X

Y

Z

P(x,y,z)

Mass of fluid passing per unit time through the face 

normal to X-axis and having point P in it 

( )u y z  =

u

ρ = density of fluid



Continuity Equation in Cartesian Coordinates
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Mass of fluid passing per unit time through the face 

ABCD in X-direction

( ) ( )
2

x
u y z u y z

x


     

   
= + −     

Mass of fluid passing per unit time through the face 

A’B’C’D’ in X-direction

( ) ( )
2

x
u y z u y z

x


     

   
= +      

Net mass of fluid that has remained in the parallelepiped 

per unit time along X-direction

( ) ( ) ( ) ( )
2 2

x x
u y z u y z u y z u y z

x x

 
           

        
= − − +             

( )u x y z
x
   


= −





Net mass of fluid that has remained in the parallelepiped 

per unit time along Y-direction

Net mass of fluid that has remained in the parallelepiped 

per unit time along Z-direction

Continuity Equation in Cartesian Coordinates
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( )v x y z
y
   


= −



( )w x y z
z
   


= −



Similarly

Net total mass of fluid that has remained in the 

parallelepiped per unit time

( ) ( ) ( )u v w
x y z

x y z

  
  

   
= − + + 

   
Equation A



Continuity Equation in Cartesian Coordinates
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Mass of fluid in the parallelepiped at any instant

( )x y z   =

Rate of increase of mass of fluid in the parallelepiped with time

( ) ( )x y z x y z
t t


      

 
= =
 

Equation B

Equate Equation A and B

( ) ( ) ( )
( )

u v w
x y z x y z

t x y z

   
     

    
= − + + 

    

( ) ( ) ( )
0

u v w

t x y z

      
+ + + =

   

The most general form

of continuity equation

applicable to all types

of flows



Continuity Equation in Cartesian Coordinates

For steady flow ( ) ( ) ( )
0

u v w

x y z

    
+ + =

  

For incompressible fluid 0
u v w

x y z

  
+ + =

  

( ) 0V =

In vector notation the generalized equation is written as 

Home work : Obtain the generalized continuity equation for spherical 

and cylindrical coordinates
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Continuity Equation in Cartesian Coordinates

Continuity equation for two dimensional flow

( ) ( )
0

u v

t x y

    
+ + =

  
Generalized 2D continuity equation

( ) ( )
0

u v

x y

  
+ =

 
2D continuity equation for steady flow

( ) ( )
0

u v

x y

 
+ =

 
2D continuity equation for steady flow of 

an incompressible fluid
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Continuity Equation in Cartesian Coordinates

Continuity equation for one dimensional flow

( )
0

u

t x

  
+ =

 
Generalized 1D continuity equation

( )
0

u

x


=


1D continuity equation for steady flow

0
du

dx
= 1D continuity equation for steady flow of 

an incompressible fluid
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Continuity Equation for 1D flow

( )
0

u

x


=


❑ One-dimensional Steady flow continuity equation

❑ This equation does not involve cross sectional area of flow

passage and hence applicable to only flow passage area is

constant

❑ One-dimensional flow can also be assumed for non-uniform

flow passage area if the flow velocity at each section is uniform

❑ For such a situation the continuity equation can be derived as

follows:

Thus, for steady flow of an incompressible fluid discharge at any 

section is constant
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Continuity Equation for 1D flow

M

N

Stream tube

M’

N’

Let, 

A = area at central plane

V = velocity at mid plane

ρ = density of fluid

Mass of fluid passing through mid plane

AV=

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Continuity Equation for 1D flow

Mass of fluid entering through plane NM per unit time

( )
2

s
AV AV

s


 

 
= −  

Mass of fluid entering through plane N’M’ per unit time

( )
2

s
AV AV

s


 

 
= +  

Net mass of fluid that has remained in the fluid element per unit time

( )AV s
s
 


= −



Mass of fluid element A s =

Rate of increase of mass of fluid element ( )A s
t
 


=




Continuity Equation for 1D flow

Thus

( ) ( )AV s A s
s t
   

 
− =
 

( ) ( ) 0A AV
t s
 

 
+ =

 

( ) 0AV
s



=


For steady flow  ConstantAV =

1 1 1 2 2 2 3 3 2AV A V AV  = =
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Continuity Equation for 1D flow

For incompressible fluid 

1 1 2 2 3 3  constantAV A V AV= = = constantAV =

Further,

 is the dischage or volumetric flowAV q=

➢Thus, for steady flow of an incompressible fluid discharge at any 

section is constant

➢This equation is applicable to steady one dimensional flow of an 

incompressible fluid
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Continuity Equation for 1D flow

1 1 2 2 3 3  constantAV A V AV= = =
Continuity equation

➢Derived for stream tube having small cross sectional areas A1, A2, A3 etc 

having velocities V1, V2 and V3; which are assumed to be uniform over a 

particular section

➢However, the above equation can also be applied to flow passages of large 

areas, even if velocity is not uniform over a particular section i. e. it varies 

from point to point over a section

M

N
dQ1, dQ2, dQ3….

dA1, dA2, dA3

v1, v2 and v3
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1 1 1 2 2 2 3 3 3, , ........dQ v dA dQ v dA dQ v dA= = =

Continuity Equation for 1D flow

1 1 2 2 3 3+ ........Q v dA v dA v dA= +

Q vdA=

If V is the mean velocity at a particular section

Q AV= Where 
1

V vdA
A

=  Mean velocity
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Tutorials

3.1 An incompressible fluid flows steadily through two pipes of

diameter 15 cm and 20 cm which combine to discharge in a pipe of

30 cm diameter. If average velocities in 15 cm and 20 cm diameter

pipes are 2 m/s and 3 m/s respectively, find the average velocity in

30 cm diameter pipe

3.2. Determine which of the following pairs of velocity components satisfy

continuity equation for two dimensional flow of an incompressible fluid

2

2 2

3 ; 2 3

;

sin ; sin

2 3 ; 3

a)  ; 

b)  

c)  

d)  

e)  

u Cx v Cy

u x y v x y

u x y v x y

u A xy v A xy

u x y v xy

= = −

= − = +

= + = −

= = −

= + = −
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Tutorials

3.3 Determine unknown velocity component so that those satisfy 

the continuity equation. Make suitable assumptions.

2

2 3

2 ; ?

2 2 ; 4 2 ; ?

a)  ;  

b)   

u x v xyz w

u x xy w z xz yz v

= = =

= + = − − =
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Consider the cube with 1 m edges parallel to the
coordinate axes located in the first quadrant with
one corner at the origin. By using the velocity
distribution of .

Find the flow through each face and show that no
mass is accumulated within the cube if fluid is of
constant density.

(5 ) (5 ) (10 )V i j kx y z= + −

Tutorials
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Acceleration of Fluid Particle

0 0 0
lim ; lim ; lim ;  x y z
dt dt dt

du dv dw
a a a

dt dt dt→ → →
= = =

Rate of change of velocity

We known ( , , , )u f x y z t=

Total derivative of u using partial derivative is

du u dx u dy u dz u dt

dt x dt y dt z dt t dt

   
= + + +
   

0 0 0
lim lim lim ,  , 
dt dt dt

dx dy dz
u v w

dt dt dt→ → →
= = =
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Acceleration of Fluid Particle

Thus

0
lim
dt

du u u u u
u v w

dt x y z t→

   
= + + +

   

x

u u u
a u v w

x

u

ty z

  
= + + +

 





Similarly
y

v v v
a u v w

x

v

ty z

  
= + + +

 





z

w w w
a u v w

x

w

ty z

  
= + + +

 





In vector notation the acceleration of a fluid particle is written as: 

.a V V= 
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Acceleration of Fluid Particle

u

t





v

t





w

t





Rate of change of velocity with respect to time at a particular point

Local or temporal acceleration

; ; ;

; ; ;

; ; ;

    

   

  

u u u
u v w

x y z

v v v
u v w

x y z

w w w
u v w

x y z

  

  

  

  

  

  

Increase in velocity due to change in 

position of particle

Convective of spatial acceleration
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Tangential and Normal Accelerations

➢ Like velocity acceleration is also a vector 

➢ However, acceleration has no fixed orientation with streamline 

V

dθ

O

A

B

V+δV

δVn

V

δVs

δV

Streamline

a

an

as

n

s

Let Vs and Vn be the components of velocity along tangential and 

normal directions C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Tangential and Normal Accelerations

The accelerations in tangential and normal directions may be 

expressed as:

0 0
lim lim    and    s n

s n
dt dt

dV dV
a a

dt dt→ →
= =

1 2( , , ) ( , , )     and    s nV f s n t V f s n t= =

The tangential component is due to change in the magnitude of 

velocity along the streamline

The normal component is due to change in the direction of velocity 

vector
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Tangential and Normal Accelerations

                   and

s s s s

n n n n

dV V V Vds dn dt

dt s dt n dt t dt

dV V V Vds dn dt

dt s dt n dt t dt

  
= + +

  

  
= + +

  

We know
0 0

lim lim   and    s n
dt dt

ds dn
V V

dt dt→ →
= =

0

0

lim

lim

= + +     

+ +     

s s s s
s s n

dt

n n n n
n s n

dt

dV V V V
a V V

dt s n t

dV V V V
a V V

dt s n t

→

→

  
=

  

  
= =

  



Tangential and Normal Accelerations

For a given streamline Vn = 0

= +     

+     

s s
s s

n n
n s

V V
a V

s t

V V
a V

s t

 

 

 
=

 

Note that though Vn = 0               is not equal to zero
nV

s





Vn is zero at any point on the streamline but at any

other point on the streamline the component of the

velocity in the direction parallel to the of Vn need not be

always zero



Tangential and Normal Accelerations

Further

)or    (since 

n

n n s
s

Vs
d

r V

V V VV
V V

s s r r







= =

 
= = = =



2

+     s n
n

V V
a

r t


=



C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Tangential and Normal Accelerations

2

s

n

s
s

n s
s

V

t

V

t

V
V

s

V V
V

s r
















=

Local tangential acceleration

Local normal acceleration

Convective tangential acceleration

Convective normal acceleration

Zero 

for 

steady 

flow

2

=

  

s
s s

s
n

V
a V

s

V
a

r





=

For steady flow



Tangential and Normal Accelerations

Straight streamline, r =  Hence no normal acceleration

Convective normal acceleration is developed only of the flow is along 

curved path so that streamline are curved

Straight and parallel streamlines

➢ Convective tangential acceleration is zero

➢Thus, No acceleration

➢Convective tangential acceleration is non-zero

Straight and converging streamlines
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Tangential and Normal Accelerations

Curved equidistance streamlines

Convective tangential acceleration is

zero and only normal convective

acceleration will be there

Curved and converging streamlines

Convective tangential acceleration

Convective normal acceleration will

be there
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Rotational and Irrotational Flow

Fundamental Motions of a Fluid Particles

❑Linear Translation or Pure Translation

❑Linear Deformation

❑Angular Deformation

❑Rotation
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Rotational and Irrotational Flow

The rotation of fluid particle may be defined in terms of Component of 

Rotation about three mutually perpendicular axes.

X

Y

P(x,yz)
A

B

A’

B’

δθ1

δθ2

δx

δy

u

v
v

v x
x



+


u
u y

y



+

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Rotational and Irrotational Flow

1

0
limPA
t t




→
=

We can write

0
lim

 
PA

t

v
v x v t

x

x t

 


 →

   
+ −    =

θ = s/r

PA

v

x



=


Thus,
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Rotational and Irrotational Flow

2

0
limPB
t t




→
=

Also

0
lim

 
PB

t

u
u y u t

y

y t

 


 →

  
− + −  

  =

θ = s/r

PB

u

y



= −


Thus,
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Rotational and Irrotational Flow

The component of rotation – the average angular velocity of two

infinitesimally linear elements in the particle that are perpendicular to

each other and to the axis of rotation (In this case Z axis)

Thus, Component of Rotation about Z axis

1
( )

2
z PA PB  = +

1

2
z

v u

x y


  
= − 

  

1

2
x

w v

y z


  
= − 

  

1

2
y

u w

z x


  
= − 

  
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Rotational and Irrotational Flow

If the component of rotation for all the axes is zero the flow is said 

to be irrotational else it is rotational

Thus, for flow to be irrotational

0z =

0x =

0y =

w v

y z

 
=

 

u w

z x

 
=

 

v u

x y

 
=

 

The rotation of fluid is always associated with shear stress
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Circulation and Vorticity

The flow along a closed curve is called circulation i. e. flow in

eddied and vortices

Mathematically, circulation is the line integral, taken around a

closed curve, of the tangential component of velocity vector

Vds

α

Vcosα

cos  
C

V ds = 

( )
C

udx vdy wdz = + +
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Circulation and Vorticity

Circulation around an elementary rectangle

u

v

A

D C

B

2

u y
u

y

 
− 
 

2

u y
u

y

 
+ 
 

2

v x
v

x

 
+ 
 2

v x
v

x

 
− 
 

Circulation along AB =
2

u y
u x

y




 
− 
 
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Circulation along BC =
2

v x
v y

x




 
+ 
 

Circulation and Vorticity

Circulation along CD =
2

u y
u x

y




 
− + 

 

Circulation along DA =
2

v x
v y

x




 
− − 

 

What ever may be the shape of the curve the circulation must be

equal to the sum of the circulation around the elementary surfaces

of which it consists, provided the boundary of the curve is wholly

in the fluid
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Circulation and Vorticity

Thus,

AB BC CD DA    = + + +

2 2 2 2

u y v x u y v x
u x v y u x v y

y x y x

   
    

         
= − + + − + − −      

         

v u
x y

x y
  

  
= − 

  

The vorticity at any is defined as the ratio of the circulation around 

an infinitesimal  closed curve at any point to the area of the curve
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Circulation and Vorticity

Thus, vorticity is given as

Circulation

Area
 = =

2 z

v u

x y
 

 

  
= = − 

  

=



Some facts about Vorticity

2 2 2     x x y y z z     = = =

Vorticity is the vector quantity whose direction is perpendicular to 

the plane of the small curve round which the circulation is 

measured

Thus,

If vorticity is zero at all points in a region then the flow in that 

region is said to be irrotational.

In vector notation vorticity may be written as 

V =   curl V =
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Simple Bluff Body Flow

Problem



Velocity Potential

The velocity potential Φ (phi) is defined as a scalar function of space

and time such that its negative derivative with respect to any

direction gives the velocity in that direction

Mathematically, if Φ = f(x, y, z, t)

;       and  u v w
x y w

    
= − = − = −

  

The negative sign indicates that Φ decreases with an increase in

values of x, y, z, Thus, flow is always in the direction of decreasing Φ.
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Velocity Potential

For steady flow of incompressible fluid continuity equation is 

0
u v w

x y z

  
+ + =

  

0
x x y y z z

           
− + − + − =    

         

2 2 2

2 2 2
0

x y z

    
+ + =

  
Laplace Equation

2 0 =

Any function Φ which satisfies the Laplace equation is the possible 

case of flow

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Velocity Potential

1

2
z

v u

x y


  
= − 

  

1

2
x

w v

y z


  
= − 

  

1

2
y

u w

z x


  
= − 

  

Further, for a rotational flow components of rotation are given as:

2 21

2
x

y z z y

 


  
= − + 

    

2 21

2
y

z x x z

 


  
= − + 

    

2 21

2
z

x y y x

 


  
= − + 

    
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Velocity Potential

If Φ is a continuous function

2 2

y z z y

  
=

   

2 2

z x x z

  
=

   

2 2

x y y x

  
=

   

❑ Thus, any function that satisfies Laplace equation is possible case 

of irrotational flow since continuity is satisfied

❑ Velocity potential exists only for irrotational flows of fluids. 

❑ Hence irrotational flow is often called potential flow. 
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Stream Function

The stream function Ψ (psi) is defined as a scalar function of space

and time such that its partial derivative with respect to any direction

gives the velocity component at right angles (in the counter

clockwise direction) to this direction

Mathematically, if   Ψ = f(x, y, t)

;    =    v u
x y

  
= −

 

A

B

u

v

(x, y)

C

D

(x+δx, y+δy)

Flow across the curve ACB in x-direction

u y= −

Flow across the curve ACB in y-direction

v x=



Stream Function

If dΨ is assumed to represent the total flow across ACB

d u y v x  = − +

If fluid is homogeneous and incompressible the flow across ADB 

or any other curve must be same as that across ACB

For steady flow the fundamental definition of stream function 

suggests that Ψ = f(x, y)

d x y
x y

 
  

 
= +
 

Equation A

Equation B
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Stream Function

Compare A and B

   and  v u
x y

  
= = −

 

Thus, the assumption that dΨ is the flow across two points is valid

and stream function can be used for determination of flow between

two points if the stream functions at these points is known.

   and  u v
x y y x

      
− = = − − = =
   

Compare the above equations with the equations for velocity potential
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   and  -
x y y x

      
= =

   

Stream Function

Cauchy-Riemann Equations

Further, we know that 
1

2
z

v u

x y


  
= − 

  

2 2

2 2

1 1

2 2
z

x x y y x y

   


          
= − − = +     

           

Poisson’s 

equation

For irrotational flow
2 2

2 2
0

x y

  
+ =

 
Laplace equation for Ψ



Stream Function

Further, the continuity equation for steady flow of incompressible 

fluid is

0
u v

x y

 
+ =

 

0
x y y x

      
− + =   

     

2 2

x y y x

  
=

   

Thus if Ψ is the continuous function and its second derivative exists it

can be a possible case of flow since it satisfies the continuity

equation
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Streamlines, Equipotential Lines and Flow Net

Property of stream function – The difference of its values at two pints 

gives the flow across any line joining the two points.

Thus, if two points are on same streamline and since there is no 

flow across the streamline, the values of stream function at these 

two points will be same i. e. Ψ1 = Ψ2

Thus, a streamline can be represented by Ψ = constant

Similarly, Φ = constant represents a curve for which velocity potential 

is constant; such a curve is called equipotential line.
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Streamlines, Equipotential Lines and Flow Net

Consider the slope of streamline and equipotential line at

intersection in a flow domain

For Φ = constant
slope = 

y u ux

x v v

y





 
  − = = =

 − 
 
 

For Ψ = constant slope = 
y v vx

x u u

y





 
   = = = −

 − 
 
 

The product of slopes of two lines is -1, which means streamline and

equipotential line intersect orthogonally



Streamlines, Equipotential Lines and Flow Net

Φ = C1

Φ = C2

Φ = C3

Φ = C4

Φ = C5

Φ = C6

Ψ = C1

Ψ = C2

Ψ = C3

Ψ = C4

Ψ = C5

Ψ = C6

Streamlines

Equipotential

lines

Vs

Vn



Streamlines, Equipotential Lines and Flow Net

nV
n


− =


We know

0nV =

sV
s


− =


The flow is along streamline as Φ is 

not constant along s-direction

Φ is constant along n-direction

Similarly

0nV
s


− = =


sV
n


= −



No flow in the direction

normal to streamline but the

flow is always along

streamline
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Assignment – Prepare a

descriptive note on the

methods of drawing the flow

net and attach it in your lab

practice journal.
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Two large circular plates are kept at a distance y0 apart

and contain an incompressible fluid in between. If the

bottom plate is fixed and top plate is moved downward at

a constant velocity of V0, estimate the velocity at which

the fluid moves at a radial distance of r.

Tutorials
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Tutorials

A 2.0 m long diffuser 20 cm in diameter at the upstream

end has 80 cm diameter at the downstream end. At a

certain instant the discharge through the diffuser is

observed to be 200 liters/s of water and is found to

increase uniformly at a rate of 50 liters/s per second.

Estimate the local, convective and total acceleration at a

section 1.5 m from the upstream end.
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For two-dimensional incompressible flow,

show that the flow rate per unit width

between two streamlines is equal to the

difference between the values of stream

function corresponding to these streamlines.

Tutorials
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The velocity profile as a function of radius is given as;

where R is the radius of the pipe and um is the

maximum velocity. Calculate the average or mean

velocity for n = 1/5 and n = ½ in terms of um

Tutorials

 1 ( / )
n

mu u r R= −
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