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Additional course Objective we will have 
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Additional course Outcome we will have 

 

Students will be able to apply generalized energy equation to formulate 

the heat transfer problem 
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Conduction:  

Transfer of energy from more energetic particles to 

less energetic particles 

Solids: energy transfer due to lattice 

vibrations/waves 

 

Fourier’s law:     
 
 dx

dTkq 

Three modes of Heat Transfer: Conduction, Convection 

and Radiation 
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Convection:  

Transfer of energy due to bulk fluid motion in 

addition to random molecular motion 

 

Newton’s law of cooling: 
  

)( bs TThq 
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Radiation:  

Transfer of energy due electromagnetic waves 

 

Stefan Boltzmann Law 

  

)( 44

surrs TTq  

Emissivity 5.68 × 10-8 

W/m2k4 
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Conservation of energy for a control volume: 
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Derivation of Energy Equation 

•LAW OF CONSERVATION OF ENERGY: 
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Governing Equations: 2-D Navier-Stokes 
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Governing Equations: 2-D Navier-Stokes 
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• Dimensional G.E 

Non-Dimensional Governing Equation 
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Non-dimensional Parameters for 

Flow and Heat Transfer 
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Mathematical Character of PDE 
• Second order 
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Classification of Governing 

Equations 
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THE THERMAL PROPERTIES OF MATTER  

THERMAL CONDUCTIVITY  

• Thermal conductivity of a material is defined as the rate of heat 

transfer through a unit thickness of the material per unit area 

per unit temperature difference.  

• The thermal conductivity of a material is a measure of how fast 

heat will flow in that material.  

• A large value for thermal conductivity indicates that the material 

is a good heat conductor,  

• A low value indicates that the material is a poor heat conductor 

or insulator.  

 

  



 

 

 

 

 

 

 
Figure: Range of thermal conductivity for various states of matter at 

normal temperature and pressure  

• Note that the thermal conductivity of a solid may be more than four orders 

of magnitude larger than that of a gas.  

• This trend is largely due to differences in intermolecular spacing for the 

two states.  

Thermal Conductivity K (W/mK) 



TYPICAL VALUES OF  h 

 
Process                  h (W/m2.K) 

Free convection 

Gases     2-25 

Liquids    50-1000 

Forced Convection 

Gases     25-250 

Liquids    50-20000 

Boiling and condensation 2500-1,00,000 

 



TYPES OF CONVECTION 

FORCED CONVECTION 

 

 

 

 

 

 

 

 

 

NATURAL CONVECTION  

BOILING AND CONDENSATION – involve phase change 

AIR 

20°C 

5 m/s 

20°C 
.

Q
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Water 
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Heating 

Boiling 

Droplets 
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Problem: A 2 m long, 0.3 cm diameter electrical wire extends across a room at 150 C as 

given in schematic.  Heat is generated in the wire as a result of resistance heating, and 

the surface temperature of the wire is measured to be 1520 C in steady operation. 

Also, the voltage drop and electric current through the wire are measured to be 60 V 

and 1.5 A, respectively.  Disregarding any heat transfer by radiation, determine the 

convection heat transfer coefficient for heat transfer between the outer surface of the 

wire and the air in the room. 
 
Known: wire dimensions, room temperature, surface temperature of the wire, 

voltage drop and electric current through the wire. 

Find:  convection heat transfer coefficient between the outer surface of the wire and 

the air in the room. 

 

 

 

 

 

 

Assumptions: 

•Steady operating conditions exist since the temperature readings do not change   

with time  

•Radiation heat transfer is negligible. 

152°C 

T = 15°C 

60V 

1.5A 



Analysis 

When steady operating conditions are reached, the rate of heat loss  from the wire will 

equal the rate of heat generation in the wire as a result of resistance heating.   

 

 

 

That is , the surface area of the wire is 

  A =  D L  =   (0.003) (2) = 0.01885 m2 

 

Newton’s law of cooling for convection heat transfer is expressed as  
 

 

Disregarding any heat transfer by radiation and thus assuming all the heat loss from 

the wire to occur by convection, the convection heat transfer coefficient is to be 

determined to be 
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Comments: 

Note that the simple setup described above can be used to determine the average 

heat transfer coefficients from a variety of surfaces in air. Also, heat transfer by 

radiation can be eliminated by keeping the surrounding surfaces at the temperature of 

the wire. 



Problem: The hot combustion gases of a furnace are separated from the ambient air 

and its surroundings, which are at 250 C, by a brick wall 0.15 m thick.  The brick has a 

thermal conductivity of 1.2 W/m.K.  Under steady state conditions an outer surface 

temperature of 1000 C is measured. Free convection heat transfer to the air adjoining 

the surface is characterized by a convection coefficient of h = 20 W/m2.K.  What is the 

brick inner surface temperature.  Neglect any heat transfer by radiation. 
 
Known: outer surface temperature of a furnace wall of prescribed thickness, thermal 

conductivity, ambient conditions 

Find:  Wall inner surface temperature 

K 



Assumptions: 

1. Steady  state conditions 

2. One dimensional heat transfer by conduction across the wall 

3. Radiation heat transfer is neglected 

 
Analysis: 

The inside surface temperature may be obtained by performing an energy balance at 

the outer surface.   
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Comments  

Brick surface temperature is high  



Heat Conduction 
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General heat diffusion equation in coordinate free form: 
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Heat diffusion equation in Cartesian coordinates:  

2 2 2
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1T T T q T
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Heat diffusion equation in Cartesian coordinates if 

thermal conductivity is constant:  



Heat Conduction 

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA 

Heat diffusion equation in Cartesian coordinates if  heat 

transfer is steady state:  

0
T T T

k k k q
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If the heat transfer is one dimensional (e.g., in the x direction) and 
there is no energy generation , above equation reduces to 

0
d dT

k
dx dx

   
 

The most important implication of this result is that under steady state, one 

dimensional conditions with no energy generation, the heat flux is a constant in the 

direction of heat transfer  



BOUNDARY AND INITIAL CONDITIONS 

• To determine the temperature distribution in a medium, it is 
necessary to solve the appropriate form of the heat equation.  

 

• However, such a solution depends on the physical conditions existing 
at the boundaries of the medium and, if the situation is time 
dependent, on conditions existing in the medium at some initial time.  

 

• Because the heat equation is second order in the spatial coordinates, 
two boundary conditions must be expressed for each coordinate to 
describe the system.  

 

• Because the equation is first order in time, however, only one 
condition, termed the initial condition, must be specified.  

 

 The three kinds of boundary conditions commonly encountered in 
heat transfer are summarized in Table 2.1. 



• The conditions are specified at the surface x = 0 for a one-dimensional system.  

 

• Heat transfer is in the positive x direction with the temperature distribution, 
which may be time dependent, designated as T( x, t ) .  

 

• The first condition corresponds to a situation for which the surface is 
maintained at a fixed temperature Ts. It is commonly termed a Dirichlet 
condition, or a boundary condition of the first kind. 

 

• Example: when the surface is in contact with a melting solid or a boiling liquid. 
In both cases there is heat transfer at the surface, while the surface remains at 
the temperature of the phase change process. 

 

• The second condition corresponds to the existence of a fixed or constant heat 
flux      at the surface. This heat flux is related to the temperature gradient at 
the surface by Fourier's Law, which may be expressed as 

 

 

         (2.21)  
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•     The second condition is termed as Neumann condition, or a boundary 

condition of the second kind, and may be realized by bonding a thin film or 

patch electric heater to the surface.  

 

•      A special case of this condition corresponds to the perfectly insulated, 

or adiabatic, surface for which  

 

 

•      The boundary condition of the third kind corresponds to the existence 

of convection heating (or cooling) at the surface and is obtained from the 

surface energy balance.  
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ONE-DIMENSIONAL STEADY STATE CONDUCTION 
• In a one-dimensional system, temperature gradients exist along 

a single coordinate direction, and heat transfer occurs 

exclusively in that direction. 

• The system is characterized by steady state conditions if the 

temperature at each point is independent of time.  

 

 

THE PLANE WALL 

 For one dimensional conduction in a plane wall, temperature is a function of 
the x coordinate only and heat is transferred exclusively in this direction.  

 In Figure 2.5, a plane wall separates two fluids of different temperatures.  

 

Heat transfer occurs,  

• by convection from the hot fluid at         to one surface of the wall at   

• by conduction through the wall, and  

• by convection from the other surface of the wall at       to the cold fluid at       2s ,T

1,T 1s ,T

2,T
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ONE DIMENSIONAL STEADY STATE HEAT 

TRANSFER IN PLANE WALL 
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ONE DIMENSIONAL STEADY STATE CONDUCTION 

HEAT TRANSFER IN PLANE WALL 
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ONE DIMENSIONAL STEADY STATE CONDUCTION 

HEAT TRANSFER IN PLANE WALL 

Steady state heat transfer rate along x direction: 

 x s , s ,

dT kA
q kA T T
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Steady state heat flux along x direction: 
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Note that both the heat rate qx and heat flux q’’x are constants, 

independent of x.  



There exists an analogy between the diffusion of heat and 
electrical charge.   

 
Thermal resistance may be associated with the conduction of 
heat in the same fashion as an electrical resistance is associated 
with the conduction of electricity. 
 
Defining resistance as the ratio of a driving potential to the 
corresponding transfer rate IT follows that the thermal resistance 
for conduction is 
 
          
 

Similarly, for electrical conduction, Ohm's law provides an 
electrical resistance of the form  
 
          

THERMAL RESISTANCE FOR HEAT TRANSFER IN 

PLANE WALL 
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THERMAL RESISTANCE FOR HEAT TRANSFER IN 

PLANE WALL: AN ELECTRICAL ANALOGY 

Thermal resistance for conduction 
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Thermal resistance for convection 

THERMAL RESISTANCE FOR HEAT TRANSFER IN 

PLANE WALL: AN ELECTRICAL ANALOGY 
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Thermal resistance network for heat transfer through a plane wall  

THERMAL RESISTANCE FOR HEAT TRANSFER IN 

PLANE WALL: AN ELECTRICAL ANALOGY 
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THERMAL RESISTANCE FOR HEAT TRANSFER 

IN PLANE WALL: AN ELECTRICAL ANALOGY 

Under steady state conditions, we have  
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THERMAL RESISTANCE FOR HEAT TRANSFER IN 

COMPOSITE WALL: AN ELECTRICAL ANALOGY 
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Composite walls may also be  
characterized by series-parallel 
configurations 
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Contact Thermal Resistance 

THERMAL RESISTANCE FOR HEAT TRANSFER IN 

COMPOSITE WALL: AN ELECTRICAL ANALOGY 
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Layer 1 Layer 2

Interface

T1=T2

 Ideal Thermal Contact 

Layer 1 Layer 2

T1

T2

Interface

 Actual Thermal Contact  

An interface will contain numerous air gaps of varying sizes that act 

as insulation because of the low thermal conductivity of air.  



Thus, an interface offers some resistance to heat transfer, and 

this resistance per unit interface area is called thermal contact 

resistance,         given by  

THERMAL RESISTANCE FOR HEAT TRANSFER IN 

COMPOSITE WALL: AN ELECTRICAL ANALOGY 
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For solids whose thermal conductivities exceed that of the 

interfacial fluid, the contact resistance may be reduced by 

increasing the area of the contact spots.  

Such an increase may be effected by increasing the joint pressure 

and/or by reducing the roughness of the mating surfaces.  

The contact resistance may also be reduced by selecting an 

interfacial fluid of large thermal conductivity. 

In this respect, no fluid (an evacuated interface) eliminates 

conduction across the gap, thereby increasing the contact 

resistance.  



PROBLEM 2.2 

 

 A leading manufacturer of household appliances is proposing a self-cleaning 

oven design that involves use of a composite window separating the oven cavity 

from the room air. The composite is to consist of two high temperature plastics 

(A and B) of thicknesses LA= 2LB and thermal conductivities kA=0.15 W/m.K and 

kB= 0.08 W/m.K. During the self-cleaning process, the oven wall and air 

temperatures, Tw and Ta, are 4000C, while the room air temperature    is 250C. 

The inside convection and radiation heat transfer coefficients hi and hr, as well 

as the outside convection coefficient ho, are each approximately 25 W/m2.K. 

What is the minimum window thickness, L=LA+LB, needed to ensure a 

temperature that is 500C or less at the outer surface of the window? This 

temperature must not be exceeded for safety reasons 

T  



Figure: 

 

 

 

 

 

 

 

 

 

 

Known: The properties and relative dimensions of plastic materials used for a 

composite oven window, and conditions associated with self-cleaning operation 

 

Find : Composite thickness LA + LB needed to ensure safe operation 
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Assumptions:  

•  Steady state conditions exist  

•  Conduction through the window is one dimensional  

•  Contact resistance is negligible  

•  Radiation absorption within the window is negligible; hence no internal heat 

generation  

•  Radiation exchange between window outer surface and surroundings is 

negligible  

•  Each plastic is homogeneous with constant properties 

Analysis: 

 The thermal circuit can be constructed by recognizing that resistance to heat 

flow is associated with convection at the outer surface, conduction in the 

plastics, and convection and radiation at the inner surface. Accordingly, the 

circuit and the resistances are of the following form:  

Ts,o TooTs,i

L
k A

L
k A

1
hoA

A B

BA

w

1
h r A

a

1
h i A

T

T

wT aT=



 Since the outer surface temperature of the window, Ts,o is prescribed, the 
required window thickness may be obtained by applying an energy 
balance at this surface. That is, from Equation 1.7 

 

 

 where, with Tw = Ta,  

 

 

 and 

 

 

 The total thermal resistance between the oven cavity and the outer 
surface of the window includes an effective resistance associated with 
convection and radiation, which act in parallel at the inner surface of the 
window, and the conduction resistances of the window materials. Hence,  
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substituting into the energy balance, it follows that  

 

 

 

hence for solving LA, 
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since LB = LA/2 = 0.0209 m,  

L = LA+ LB= 0.0627 m = 62.7 mm  

 

Comments:  

1. The self cleaning operation is a transient process, as far as the thermal 
response of the window is concerned, and steady state conditions may not be 
reached in the time required for cleaning. However, the steady state 
condition provides the maximum possible value of Ts,o and hence is well 
suited for the design calculation.  

 

2. Radiation exchange between the oven walls and the composite window 
actually depends on the inner surface temperature Ts,1 , and although it has 
been neglected, there is radiation exchange between the window and the 
surroundings, which depends on Ts,o.  

 

        A more complete analysis may be made to concurrently determine Ts,1 and Ts,o. 
Approximating the oven cavity as a large enclosure relative to the window 
and applying an energy balance, equation 1.12, at the inner surface it follows 
that  

" " "
rad ,i conv,i condq q q 



or 

 

 

 Approximating the kitchen walls as a large isothermal enclosure relative to the 

window, with              ,and this time applying energy balance at the outer 

surface, it follows that   

 

or  

 

 

 

 If all other quantities are known, Equations 1 and 2 may be solved for               

Ts,1 and Ts,0.  

 

 We wish to explore the effect on Ts,0 of varying velocity, and hence the 

convection coefficient, associated with airflow over the outer surface. With  ɛ = 

0.9  and all other conditions remaining the same, equations 1 and 2 have been 

solved for values of h0 in the range               W/m2 K and the results are 

represented graphically. 
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3. Increasing h0 reduces the corresponding convection resistance, and a value of 

h0 =30 W/m2 K would yield a safe to touch temperature of                            

Ts,0 = 43°C . Because the conduction resistance is so large, the change h0  in has 

a negligible effect on Ts,1 . However it does influence the outer surface 

temperature, and as               ,                      
oh  s ,oT 



ONE DIMENSIONAL STEADY STATE CONDUCTION 

WITH HEAT GENERATION 

0
'''

2

2





k

q

x

T

21

2'''

2
CxC

x

k

q
T 


 -L L 

x 

21 )(   )( TLTTLT Constant wall temperature BC: 

22
1

2
)( 2112

2

22'''
TT

L

xTT

L

xL

k

q
xT


















Verify 



ONE DIMENSIONAL STEADY STATE CONDUCTION 

WITH HEAT GENERATION 

Note: 

Temperature gradient is dependent on x whereas it was 

independent of x in slab without heat generation 

 

 Temperature distribution in case of heat conduction with 

heat generation is dependent on thermal conductivity (k). 

It is independent of k in slab without heat generation. 
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WITH HEAT GENERATION 
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ONE DIMENSIONAL STEADY STATE CONDUCTION 

WITH HEAT GENERATION 
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THE CYLINDER  
 Consider a hollow cylinder, whose inner and outer surfaces are exposed to 

fluids at different temperatures. For steady state conditions with no heat 
generation, the appropriate form of the heat equation,  

 

          

 

  

 where, for a moment k is treated as a variable. The physical significance of this 
result becomes evident if we also consider the appropriate form of Fourier's 
law. The rate at which energy is conducted across the cylindrical surface in the 
solid may be expressed as  

 

        Equation A 

 

 where A = 2πrL is the area normal to the direction of heat transfer. 

 

NOTE: Since, above  equation prescribes that the quantity            is independent of 

r, it follows that the conduction heat transfer rate qr (not the heat flux       ) is a 

constant in the radial direction.   
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Figure : Hollow Cylinder With Convective Surface Conditions  

 

 Assuming the value of k to be constant, above equation may be integrated 
twice to obtain the general solution  

 

          

 

 Applying the boundary conditions to the general solution,  

 i.e. T(r1 ) = Ts,1 and T(r2 ) = Ts,2 we obtain, 

1 2T( r ) C lnr C 



 

 
 Solving for C1and C2 and substituting into the general solution, we then obtain  

 

          

 

 

NOTE: that the temperature distribution associated with radial conduction through 

a cylindrical wall is logarithmic, not linear, as it is for the plane wall. The 

logarithmic distribution is shown in Figure.  

 

 If the temperature distribution equation, is now used with Fourier's law, we 

obtain the following expression for the heat transfer rate: 
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 From this result it is evident that, for radial conduction in a cylindrical wall, the 
thermal resistance is of the form  

 

          

 

 

 This resistance is shown in Figure. Note that since the value of qr is 
independent of r , the foregoing result could have been obtained by using the 
alternative method, that is, by integrating Equation A.  

 

 Consider now the composite system. Recalling how we treated the composite 
plane wall and neglecting contact resistances between the interface, the heat 
transfer rate may be expressed as  

 

 

          

 

 

 

 The above result may also be expressed in terms of an overall heat transfer 
coefficient. That is,  
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 If U is defined in terms of the inside area, A1=2πr1L Equations 2.47 and 2.48 

may be equated to yield  

 

          

 

 

Note:  

• UA is constant, while U is not 

• In radial system q” is constant, while q is not 
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Figure :Temperature Distribution For A Composite Cylindrical Wall  
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Objectives 
 One dimensional steady conduction in sphere is introduced 

 The approach is to reduce the heat diffusion equation for the case chosen. 

 Using the appropriate boundary conditions, the heat diffusion equation is 

solved for temperature distribution. 

 Concept of critical radius of insulation is presented. 

THE SPHERE 

 Consider a  hollow sphere, whose inner and outer surfaces are exposed to fluids 

at different temperatures (Fig. 2.14).  

 

 

 

 

Figure: Conduction in a spherical shell  



 For steady state conditions with no heat generation, the appropriate form of 
the heat equation, 

 

          

 

 where, for a moment k is treated as a variable. The physical significance of this 
result becomes evident if we also consider the appropriate form of Fourier's 
law. The rate at which energy is conducted across the cylindrical surface in the 
solid may be expressed as  

 

          

 

 where A =4πr2 is the area normal to the direction of heat transfer. Since,  

 above equation 2.50 states that the quantity               is independent of r, it 
follows that the conduction heat transfer rate qr (not the heat flux qr") is a 
constant in the radial direction.  

 

 Assuming the value of k to be constant, above equation may be integrated 
twice to obtain the general solution  
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Applying, the following boundary conditions  

T(r1 ) = T s,1 and T(r2 ) = T s,2  

we then obtain  

 

 

 

 

 Solving for C1and C2 and substituting into the general solution, we then obtain  

 

          

 

 

 Note that the temperature distribution associated with radial conduction 
through a spherical wall is not linear, as it is for the plane wall under the same 
conditions.  
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 If the temperature distribution equation is now used with Fourier's law, 
Equation 2.51, we obtain the following expression for the heat transfer rate:  

 

          

 

 

 From this result it is evident that, for radial conduction in a spherical wall, the 
thermal resistance is of the form  

 

          

 

 

 Note that since the value of qr is independent of r , the above result could 
have been obtained by using the alternative method, that is, by integration 
Equation 

 

 

 Spherical composites may be treated in much the same way as composite 
walls and cylinders, where approximate forms of the total resistance and 
overall heat transfer coefficient may be determined 
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Problem 2.3  

 A spherical thin walled metallic container is used to store liquid nitrogen at 80 K. 
The container has a diameter of 0.5 m and is covered with an evacuated, 
reflective insulation composed of silica powder. The insulation is 25 mm thick, 
and its outer surface is exposed to ambient air at 310K. The convection 
coefficient is known to be 20 W/m2 K. The latent heat of vaporization and the 
density of the liquid nitrogen are 2 x 105J/kg and 804 kg/m3, respectively. 
Thermal conductivity of evacuated silica powder (300 K) is 0.0017 W/m.K  

•  what is the rate of heat transfer to the liquid nitrogen ?  

•  what is the rate of liquid boil-off ?  

Figure 



Known: Liquid nitrogen is stored in spherical container that is insulated and 
exposed to ambient air. 

Find: 

•  The rate of heat transfer to the nitrogen.  

•  The mass rate of nitrogen boil-off. 

 

Assumptions:  

1. Steady state conditions  

2. One dimensional transfer in the radial direction  

3. Negligible resistance to heat transfer through the container wall and from the 
container to the nitrogen  

4. Constant properties  

5. Negligible radiation exchange between outer surface of insulation and 
surroundings 

Analysis: 

1. The thermal circuit involves a conduction and convection resistance in series and 
is of the form 
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where, from Equation 2.55 

 

 

and from Equation 2.30  

 

 

The rate of heat transfer to the liquid nitrogen is then  

 

 

 

 

 

 

 

2.  Performing an energy balance for a control surface about the nitrogen, it follows 

from Equation 1.7 that   
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Where               and                  is associated with the loss of latent energy due to 
boiling. Hence, 

 

and the boil off is,  

 

 

The loss per day is 

 

 

or on a volumetric basis  

 

 

Comments:  

1. 

2.With a container volume of (4/3)(      ) =0.065 m3= 65 litres, the daily loss to 
(7.24liters/65 liters) 100% = 11.14% of capacity. 
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STEADY STATE HEAT CONDUCTION IN RADIAL 

SYSTEM WITH HEAT GENERATION  

hT ,

.

q

L
r

or

sT

0
1

.









k

q

dr

dT
r

dr

d

r

1

2

.

2
Cr

k

q

dr

dT
r 








21

2

.

ln
4

)( CrCr
k

q
rT 



STEADY STATE HEAT CONDUCTION IN RADIAL 

SYSTEM WITH HEAT GENERATION  

Boundary conditions: 
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STEADY STATE HEAT CONDUCTION IN RADIAL 

SYSTEM WITH HEAT GENERATION  

In terms of outside conditions the BCs may be implemented 

considering conduction equal to convection: 
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THE CRITICAL RADIUS OF INSULATION 

 

 We know that by adding more insulation to a wall always decreases 

heat transfer.  

 This is expected, since the heat transfer area A is constant, and adding 

insulation will always increase the thermal resistance of the wall 

without affecting the convection resistance.  

 However, adding insulation to a cylindrical piece or a spherical shell, is 

a different matter.  

 The additional insulation increases the conduction resistance of the 

insulation layer but it also decreases the convection resistance of the 

surface because of the increase in the outer surface area for 

convection. 

 Therefore, the heat transfer from the pipe may increase or decrease, 

depending on which effect dominates.  



Consider a cylindrical pipe (Figure. 2.15), where, 

r1 -- outer radius  

T1 -- constant outer surface temperature  

k -- thermal conductivity of the insulation 

r2 -- outer radius  

    - temperature of surrounding medium 

h - convection heat transfer coefficient  

 

 

 

 

 

 

 

 

      

 

 

Figure Insulated Cylindrical Pipe 



 The rate of heat transfer from the insulated pipe to the surrounding air can be 

expressed as 

 

          

 

 

 The variation of heat transfer rate with the outer radius of insulation r2 is plotted 

in Figure. The value of r2 at which heat transfer rate reaches maximum is 

determined from the requirement that          (zero slope).  

 

 Performing the differentiation and solving for r2 gives us the critical radius of 

insulation for a cylindrical body to be  

 

          

 

NOTE: The rate of heat transfer from the cylinder increases with the addition of 

insulation for r2< rcr, reaches a maximum when r2= rcr, and starts to decrease for 

r2> rcr. Thus, insulating the pipe may actually increase the rate of heat transfer 

from the pipe instead of decreasing it when r2< rcr .  
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Figure : Variation Of Heat Transfer Rate With Radius  



The important question to answer at this point is,  

 

 Whether we need to be concerned about the critical radius of insulation when 
insulating hot water pipes or even hot water tanks? 

 Should we always check and make sure that the outer radius of insulation 
exceeds the critical radius before we install any insulation?  

 
Probably not, as explained below.  

 The value of the critical radius rcr will be the largest when k is large and h is 
small.  

 Noting that the lowest value of h encountered in practice is about 5 W/m2K 
for the case of natural convection of gases 

 Also, the thermal conductivity of common insulating materials is 0.05 W/m2K, 

 The largest value of the critical radius we are likely to encounter is  

 

 

 

• This value would be even smaller when the radiation effects are considered.  
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• The critical radius would be much less in forced convection, often less than 1 
mm, because of much larger h values associated with forced convection.  

• Therefore, we can insulate hot water or steam pipes freely without worrying 
about the possibility of increasing the heat transfer by insulating the pipes.  

• The radius of electric wires may be smaller than the critical radius.  

• Therefore, the plastic electrical insulation may actually enhance the heat 
transfer from electric wires and thus keep their steady operating 
temperatures at lower and thus safer levels. 

 

Similarly for a sphere, it can be shown that the critical radius of insulation for a 
spherical shell is  

 

          

 

where k is the thermal conductivity of the insulation and h is the convection heat 
transfer coefficient on the outer surface.  
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Problem 2.4:  

 A 3 mm diameter and 6 m long electric wire is tightly wrapped with a 2 mm 

thick plastic cover whose thermal conductivity is k = 0.15 W/m.0C. Electrical 

measurements indicate that a current of 10 A passes through the wire and 

there is a voltage drop of 8 V along the wire. If the insulated wire is exposed to 

a medium at 27oC with a heat transfer coefficient of h=12 W/m2.oC, determine 

the temperature at the interface of the wire and the plastic cover in steady 

operation. Also determine whether doubling the thickness of the plastic cover 

will increase or decrease this interface temperature.  

Figure 
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Known : Size of the electric wire, thermal conductivity of the wire, current and 
voltage supplied to the wire, ambient conditions and heat transfer 
coefficient. 

 

Find : 
 Convection heat transfer coefficient between the outer surface of the wire and the 

air in the room. 

1. Heat transfer is steady since there is no indication of any change with time.  

2. Heat transfer is one dimensional since there is thermal symmetry about the 
center line and no variation in the axial direction.  

3. Thermal conductivities are constant.  

4. The thermal contact resistance at the interface is negligible.  

5. Heat transfer coefficient incorporates the radiation effects, if any. 

 

Analysis: 

 Heat is generated in the wire and its temperature rises as a result of 
resistance heating. We assume heating is generated uniformly throughout 
the wire and is transferred to the surrounding medium in the radial direction. 
In steady operation, the rate of heat transfer becomes equal to the heat 
generated within the wire, which is determined from  

 8 10 80WQ VI  



 The thermal resistance network for this problem involves a conduction 

resistance for the plastic cover and a convection resistance for the outer surface 

in series, as shown in Schematic. The values of these two resistances are 

determined to be 

 

 

 

 

 

 

 and therefore  

 Rtotal= Rtotal + Rconv = 0.63 + 0.15 = 0.78 oC/W 

 Then the interface temperature can be determined from   
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 Note that we did not involve the electrical wire directly in the thermal resistance 

network, since the wire involves heat generation.  

 To answer the second part of the question, we need to know the critical radius of 

insulation of the plastic cover.  

 

 

 which is larger than the radius of the plastic cover. Therefore, increasing the 

thickness of the plastic cover will enhance heat transfer until the outer radius of 

the cover reaches 12.5 mm. As a result, the rate of heat transfer will increase 

when the interface temperature T1 is held constant. 

 

Comments:  

 It can be shown by repeating the calculations above for a 4 mm plastic cover that 

the interface temperature drops to 77.54oC when the thickness of the plastic 

cover is doubled. It can also be shown in a similar manner that the interface 

reaches a minimum temperature of 71.14oC when the outer radius of the plastic 

cover equals the critical radius. 
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SUMMARY OF 1-D STEADY STATE CONDUCTION 

 

 Many important problems are characterized by one-dimensional steady-state 

conduction in plane, cylindrical or spherical walls with or without thermal 

energy generation. Key results for these geometries are summarized in Table on 

next slide, where T refers to the temperature difference, Ts,1–Ts,2 , between the 

inner and outer surfaces identified in the corresponding figures earlier. In each 

case, beginning with the heat equation, you should be able to derive the 

corresponding expression for the temperature distribution, heat flux, heat rate, 

and thermal resistance.  



 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Table : One-Dimensional Steady State Solutions to the Heat Equation With 

No Generation  

 

Plane Wall  Cylindrical Wall  Spherical Wall  
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HEAT TRANSFER FROM EXTENDED SURFACES  
 Objectives 
The significance of enhancing the heat transfer by using fins or extended surfaces 
is presented initially. 

 A general form of the energy equation for one dimensional conditions in an 
extended surface is derived. 

 

INTRODUCTION 

The term extended surface is commonly used in reference to a solid that 
experiences energy transfer by conduction within its boundaries, as  well as 
energy transfer by convection  (and/or radiation) between its  boundaries 
and the surroundings. (Fig. 3.1) 

 A strut is used to provide mechanical support to two walls that are at different 
temperatures.  

A temperature gradient in the x-direction sustains heat transfer by  conduction 
internally, at the same time there is energy transfer by convection from the 
surface. 

 

 

 



 

 

 

 

 

 

 

 

 
 
 
 

Figure: Combined Conduction And Convection In A Structural Element  

 
 The most frequent application is one in which an extended surface is used 

specifically to enhance the heat transfer rate between a solid and an 
adjoining fluid.  

 

 Such an extended surface is termed a fin. 
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Consider a plane wall of Figure  (next slide).  

where,  

Ts  -- the surface temperature  

T  -- temperature of  surrounding medium  

The rate of heat transfer is given by Newton's law of cooling as 

 

          

 

where  

A -- the heat transfer area  

h -- is the convection heat transfer coefficient.  

 

NOTE: 

 If Ts is fixed, there are two ways in which the heat transfer rate may be increased. 

The convection coefficient h could be increased by  

•  Increasing the fluid velocity  

•  The fluid temperature T could be reduced  

conv s
Q h A(T T ) 



 

 

 

 

 

 

 

 

 

Figure: Use Of Fins To Enhance Heat Transfer From A Plane Wall (A) Bare 

Surface (B) Finned Surface  

 

LIMITATIONS: 

 

 Many situations would be encountered in which increasing h to the maximum 
possible value is either insufficient to obtain the desired heat transfer rate or 
the associated costs are prohibitively high.  

 



 Such costs are comprised of  the blower or pump power requirements needed 
to increase h through increased fluid motion.  

 

 Moreover, the second option of reducing      is often impractical. 

  

A third option.  

 That is, the heat transfer rate may be increased by increasing the surface area 
across which the convection occurs.  

 

 This may be done by providing fins that extend from the wall into the 
surrounding fluid.  

 

 The thermal conductivity of the fin material has a strong effect on the 
temperature distribution along the fin and therefore influences the degree to 
which the heat transfer rate is enhanced.  

 

 Ideally, the fin material should have a large thermal conductivity to minimize 
temperature variations from its base to its tip.  

 

 In the limit of infinite thermal conductivity, the entire fin would be at the 
temperature of the base surface, thereby providing the maximum possible heat 
transfer enhancement. 

T



APPLICATIONS: 

There are several fin applications, 

 the arrangement for cooling engine heads on motorcycles and lawn-mowers 

or  

 for cooling electric power transformers 

 the tubes with attached fins used to promote heat exchange between air and 

the working fluid of an air conditioner.  

Two common finned tube arrangements are shown in Figure  (next slide) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Schematic Of Typical Finned Tube Heat Exchangers  

Gas Flow



Different fin configurations are: 

 A straight fin is any extended surface that is attached to a plane wall. It may be 
of uniform cross sectional area, or its cross sectional area may vary with the 
distance x from the wall.  

 

 An annular fin is one that is circumferentially attached to a cylinder, and its 
cross section varies with radius from the centerline of the cylinder.  

 

 The foregoing fin types have rectangular cross sections, whose area may be 
expressed as a product of the fin thickness t and the width w for straight fins or 
the circumference for annular fins.  

 

 In contrast a pin fin, or spine, is an extended surface of circular cross section.  

 

 Pin fins may also be of uniform or non-uniform cross section.  



 

 

 

 

 

Figure: Fin Configurations (A) Straight Fin Of Uniform Cross Section (B) 

Straight Fin Of Non-Uniform Cross Section (C) Annular Fin (D) Pin Fin  

 

In any application, selection of a particular fin configuration may depend on  

 space,  

 weight,  

 manufacturing and  

 cost considerations,  

 the extent to which the fins reduce the surface convection coefficient and 

 increase in  the pressure drop associated with flow over the fins.  
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A GENERAL CONDUCTION ANALYSIS 
      To determine the heat transfer rate associated with a fin, we must first obtain 

the temperature distribution along the fin. We begin our analysis by performing 
an energy balance on an appropriate differential element. Consider the 
extended surface of Figure. The analysis is simplified if certain assumptions are 

made.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Energy Balance for an Extended Surface 
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Assumptions  

 

•  Heat transfer is assumed to be in only one dimensional i.e., in the longitudinal (x) 
direction, even though conduction within the fin is actually two dimensional.  

 

•  The rate at which the energy is convected to the fluid from any point on the fin 
surface must be balanced by the rate at which the energy reaches that point 
due to conduction in the transverse ( y,z ) direction. However, in practice the fin 
is thin and temperature changes in the longitudinal direction are much larger 
than those in the transverse direction.  

 

•  Steady state conditions are assumed. 

  

•  Thermal conductivity is assumed to be constant . 

 

•  Radiation from the surface is assumed to be negligible . 

 

•  Convection heat transfer coefficient is assumed to be uniform over the surface.  



Applying the conservation of energy requirement to the differential element, we 

obtain  

 

          

 

From Fourier's law we know that  

 

          

 

Where Ac is the cross-sectional area, which may vary with x . Since the conduction 

heat rate at x+dx may be expressed as  

 

          

 

It follows that  
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The convection heat transfer rate may be expressed as  

 

          

 

Where dAs is the surface area of the differential element.  

Substituting the foregoing rate equations into the energy balance equation , we 
obtain  

 

          

 

or 

 

          

 

 This result provides a general from of the energy equation for one dimensional 
condition in an extended surface. Its solution for appropriate boundary 
conditions would provide the temperature distribution, which could then be 
used with Equation of Fourier’s  law of heat conduction to calculate the 
conduction rate at any distance x.  
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Objectives 

 The temperature distribution for rectangular fin and pin fin with various boundary 

conditions is obtained from the general form of the energy equation for an 

extended surface which we derived. 

FINS OF UNIFORM CROSS SECTIONAL AREA 

 Consider the simplest case of straight rectangular and pin fins of uniform cross 

section (Figures below). Each fin is attached to a base surface of temperature 

T(0)=Tb and extends into a fluid of temperature T. 

 

 

 

 

 

 

 

 

 

 

Figure: Fins of Uniform Cross Section (a) Rectangular Fin (b) Pin Fin 



 

For the prescribed fins,  

 Ac is a constant and As = Px , 

 As is the surface area measured from the base to x and 

 P is the fin perimeter.  

 

 

 

 

Accordingly, with                   and                , Governing Equation reduces to  

 

          

 

To simplify  this equation, we transform the dependent variable by defining the 

excess temperature      as  
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 where, since      is a constant,                   . Substituting 

          

                                                                                             where  

          

 

 Above equation is linear, homogenous, second order differential equation with 

constant coefficients. Its general solution is of the form  

 

          

 

 To evaluate the constant C1 and C2 of this equation , it is necessary to specify 

appropriate boundary conditions. One such condition may be specified in terms 

of the temperature at the base of the fin (x=0)  
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The second condition, specified at the fin tip (x=L), may correspond to any one of 

the four different physical conditions.  

• Convection heat transfer from the fin tip  

• Adiabatic condition at the fin tip  

• Prescribed temperature maintained at the fin tip  

• Infinite fin (very long fin)  
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Case B, Adiabatic condition at the fin tip  

The assumption that the convective heat loss from the fin tip is negligible reduces to 

the condition that the tip may be treated as adiabatic and we obtain  
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Case A, Convection Heat Transfer From the Fin Tip  

Applying an energy balance to a control surface about this tip, we obtain  
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 That is, the rate at which energy is transferred to the fluid by convection from 

the tip must equal the rate at which energy reaches the tip by conduction 

through the fin.  

Thus,  

 

          

 

and  

 

          

 

Solving for C1 and C2, it may be shown, after some manipulation, that  
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 The form of this temperature distribution is shown schematically in Figure 

below. Note that the magnitude of the temperature gradient decreases with 

increasing x. This trend is an effect of the reduction in the conduction heat 

transfer qx(x) with increasing x due to continuous convection loss from the fin 

surface.  

 

 

 

 

 

 

 

 

 

 

 

Figure: Conduction And Convection In A Fin Of Uniform Cross Section  
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 Also, we need to find the total heat transferred by the fin. From Figure it is 

evident that the fin heat transfer rate qf may be evaluated by applying Fourier's 

law at the fin base. That is,  

 

          

 

 Hence, knowing the temperature distribution, q(x), qf may be evaluated, giving  

 

         

 

Case B, Adiabatic condition at the fin tip  

 The assumption that the convective heat loss from the fin tip is negligible 

reduces to the condition that the tip may be treated as adiabatic and we obtain  
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Substituting and dividing by m , we then obtain  

 

          

 Solving for C1 and C2 and substituting the results , we obtain  

 

          

 

Using this temperature distribution , the fin heat transfer rate is  

 

          

 

Case C, Prescribed temperature maintained at the fin tip  

 The assumption that the fin tip is maintained at a prescribed temperature 

reduces to the following boundary condition 
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Substituting from Equation 3.13, we then obtain 

 

         (3.27) 

 

Using this expression with Equation 3.17 to solve for C1 and C2 and substituting the 
results into Equation 3.13, we obtain  

 

         (3.28) 

 

 

Using this temperature distribution with Equation 3.20, the fin heat transfer rate is  

 

         (3.29) 

 

 

 

Case D, Infinite fin (very long fin)  

The very long fin situation is an interesting extension of the fin tip maintained at a 
prescribed temperature.  
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As                             , the Equation 3.28 reduces to  

 

         (3.30) 

The above equation reduces to  

 

 

         (3.31) 

 

As                              , the Equation 3.31 reduces to  

 

         (3.32) 

 

 

The fin heat transfer rate given by Equation 3.29 reduces to  

 

         (3.33) 

 

 

As,                             the Equation 3.33 reduces to  
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         (3.34) 

 

 

The foregoing results are summarized in Table 3.1.  

 

Table 3.1 Temperature Distribution and heat  

loss for fins of uniform cross section  
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Problem 3.1:  

 A very long rod 5 mm in diameter has one end maintained at 100oC. The surface 
of the rod is exposed to ambient air at 25oC with a convection heat transfer 
coefficient of 100 W/m2K.  

•  Determine the temperature distributions along rods constructed from pure 
copper, 2024 aluminium alloy and type AISI 316 stainless steel. What are the 
corresponding heat losses from the rods?  

•  Estimate how long the rods must be for the assumption of infinite length to yield 
an accurate estimate of the heat loss  

 

Figure: 

 
 

 

 

 

 

 

 

 

Known : A long circular rod exposed to ambient air. 

 

Air

h=100W/m2K



Find :  

•  Temperature distribution and heat loss when rod is fabricated from copper, an 
aluminum alloy, or stainless steel. 

•  How long rods must be to assume infinite length.  

 

Assumptions:  

•  Steady state conditions  

•  One dimensional conduction along the rod  

•  Constant properties  

•  Negligible radiation exchange with surroundings  

•  Uniform heat transfer coefficient  

 

Properties : At  [T = (Tb+    )/2 = 62.5oC= 335 K] Copper: k = 398 W/m.K; 
Aluminium: k = 180 W/m.K; Stainless steel, k = 14 W/m.K  

 

Analysis: 

1. Subject to the assumption of an infinitely long fin, the temperature 
distributions are determined from equation 3.32, which may be expressed as,  
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where 

 

 

          Substituting for h and D , as well as for the thermal conductivities of copper, 

the aluminium alloy and the stainless steel, respectively, the values of m are 

14.2, 21.2 and 75.6 m-1. The temperature distributions may then be 

computed and plotted as follows.   
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 From these distributions, it is evident that there is little additional heat transfer 

associated with extending the length of the rod much beyond 50, 200 and 300 

mm, respectively, for the stainless steel, the aluminium alloy and the copper.  

From Equation 3.34 the heat loss is,  

 

 

 

 

Similarly, for the aluminium alloy and stainless steel, respectively, the heat rates are 

qf= 5.6 W and 1.6 W  

 

2. Since there is no heat loss from the tip of an infinitely long rod, an estimate of the 

validity of the approximation may be made by comparing Equations 3.25 and 3.34. 

to a satisfactory approximation, the expressions provide equivalent results if 

TanhmL   2.65. Hence a rod may be assumed to be infinitely long if  
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For copper,  

 

 

 

Results for the aluminium alloy and stainless steel are      = 0.13 m and        = 0.04 m, 
respectively. 

 

Comments:  

The above results suggest that the fin heat transfer rate may accurately be 
predicted from the infinite fin approximation if mL     2.65                  

  

 However, if the infinite fin approximation is to accurately predict the 
temperature distribution T(x) , a larger value of mL would be required. This 
value may be inferred from Equation 3.32 and the requirement that the tip 
temperature be very close to the fluid temperature. Hence, if we require that                         
, it follows that mL > 4.6, in which case                                            L  0.33,0.23 and 
0.07 m for the copper aluminium alloy, and stainless steel, respectively.  
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 Objectives 

 The concept of fin efficiency, effectiveness is introduced in order to compare 

various fin configurations. 

 Also, the proper length of fin from practical point of view is presented. 

 

FIN EFFICIENCY 

Consider the surface of the plane wall  

 at temperature Tb  

 exposed to a medium at temperature    .  

 Heat is lost from the surface to the surrounding medium by convection with a 

heat transfer coefficient of h.  

 

Neglecting radiation, heat transfer from a surface area A is expressed as                            

      . Now let us consider a fin of constant cross sectional area Ac= 

Ab and length L that is attached to the surface with a perfect contact (Figure on 

next slide). 
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Figure : Fins Enhance Heat Transfer from a Surface by Enhancing Surface  

 

 This time heat will flow from the surface to the fin by conduction. 

  

 from the fin to the surrounding medium by convection with the same heat 

transfer coefficient h.  

 

Ab=w   t

Tb

w

L

tAfin

Surface without fins(a)

(b) Surface with a fin
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• The temperature of the fin will be Tb at the fin base and gradually decrease 
toward the fin tip.  

 

 Convection from the fin surface causes the temperature at any cross section to 
drop somewhat from the midsection toward the outer surfaces.  

 

 However, the cross sectional area of the fins is usually very small, and thus the 
temperature at any cross section can be considered to be uniform.  

 

 Also, the fin tip can be assumed for convenience and simplicity to be insulated 
by using the corrected length for the fin instead of the actual length.  

 

•  In the limiting case of zero thermal resistance or infinite thermal conductivity            
(            ), the temperature of the fin will be uniform at the base value of Tb. The 
heat transfer from the fin will be maximum in this case and can be expressed as  
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      In reality, however, the temperature of the fin will drop along the fin, and thus 

the heat transfer from the fin will be less because of the decreasing 

temperature difference T(x) -       toward the fin tip, as shown in Figure (on next 

slide)  

 To account for the effect of this decrease in temperature on heat transfer, we 

define fin efficiency as  

 

          

 

 

where Afin is the total surface area of the fin.  

 

 This relation enables us to determine the heat transfer from a fin when its 

efficiency is known. For the cases of constant cross section of very long fins and 

fins with insulated tips, the fin efficiency can be expressed as  
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and  

 

 

          

 

 

          

 

 

 Since Afin=PL for fins with constant cross section. Above equation can also be 
used for fins subjected to convection provided that the fin length L is replaced 
by the corrected length Lc.  

 

 Fin efficiency relations are developed for fins of various profiles and are plotted 
in Figures for fins on a plain surface and for circular fins of constant thickness. 
The fin surface area associated with each profile is also given on each figure. For 
most fins of constant thickness encountered in practice, the fin thickness t is too 
small relative to the fin length L , and thus the fin tip area is negligible. Note that 
fins with triangular and parabolic profiles contain less material and are more 
efficient than the ones with rectangular profiles, and thus are more suitable for 
applications requiring minimum weight such as space applications. 
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Figure 3.9 Ideal And Actual Temperature Distribution In A Fin  
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 An important consideration in the design of finned surfaces is the selection of 
the proper fin length L.  

 

 Normally the longer the fin, the larger the heat transfer area and thus the 
higher the rate of heat transfer from the fin.  

 

 But also the larger the fin, the bigger the mass, the higher the price, and the 
larger the fluid friction.  

 

 Therefore, increasing the length of the fin beyond a certain value cannot be 
justified unless the added benefits outweigh the added cost.  

 

 Also, the fin efficiency decreases with increasing fin length because of the 
decrease in fin temperature with length.  

 

 Fin lengths that cause the fin efficiency to drop below 60 percent usually 
cannot be justified economically and should be avoided. 

 

 The efficiency of most fins used in practice is above 90 percent.  



 

 

 

 

 

 

 

 

 

 

 

Figure: Efficiency Of Circular, Rectangular And Triangular Fins On A Plain Surface Of Width 
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Figure: Efficiency Of Circular Fins Of Length L And Constant Thickness T  
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FIN EFFECTIVENESS 

 Fins are used to enhance heat transfer, and the use of fins on a surface cannot be 

recommended unless the enhancement in heat transfer justifies the added cost 

and complexity associated with the fins. 

 

 In fact, there is no assurance that adding fins on a surface will enhance heat 

transfer.  

 

 The performance of the fins is judged on the basis of enhancement of heat 

transfer relative to the no fin case.  

 

The performance of fins expressed in terms of the fin effectiveness ɛfin      defined  

as (See figure)  

          

 

Here, Ab is the cross sectional area of the fin at the base and qno fin represents  

the rate of heat transfer from this area if no fins are attached to the surface.  
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The physical significance of effectiveness of fin can be summarized below  

 

 An effectiveness of ɛfin = 1 indicates that the addition of fins to the surface does 
not affect heat transfer at all. That is, heat conducted to the fin through the 
base area Ab is equal to the heat transferred from the same area Ab to the 
surrounding medium  

 

 An effectiveness of ɛfin < 1 indicates that the fin actually acts as insulation, 
slowing down the heat transfer from the surface. This situation can occur when 
fins made of low thermal conductivity materials are used.  

 

 An effectiveness of ɛfin > 1 indicates that the fins are enhancing heat transfer 
from the surface, as they should. However, the use of fins cannot be justified 
unless ɛfin is sufficiently larger than 1. Finned surfaces are designed on the basis 
of maximizing effectiveness of a specified cost or minimizing cost for a desired 
effectiveness.  



 

 

 

 

 

 

 

 

Figure: The Effectiveness Of The Fin  

 

RELATION BETWEEN FIN EFFICIENCY AND FIN EFFECTIVENESS               

The fin efficiency and fin effectiveness are related to the performance of the fin, 

but they are different quantities. However, they are related to each other by  

 

          
fin fin fin fin b fin fin

fin

no fin b b b b b

q q h A (T T ) A

q h A (T T ) h A (T T ) A

 
 

 


   

 



Therefore, the fin effectiveness can be determined easily when the fin efficiency is 

known, or vice versa.  

 

The rate of heat transfer from a sufficiently long fin or uniform cross section under 

steady conditions is given by Equation 3.34. Substituting this relation into 

Equation 3.40, the effectiveness of such a long fin is determined to be  

 

          

 

Since Ac = Ab in this case. We can draw several important conclusions from the fin 

effectiveness relation above for consideration in the design and selection of the 

fins  

 

 The thermal conductivity k of the fin material should be as high as possible. Thus it 

is no coincidence that fins are made from metals, with copper, aluminum, and iron 

being the most common ones. Perhaps the most widely used fins are made of 

aluminum because of its low cost and weight and its resistance to corrosion.  
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 The ratio of the perimeter to the cross sectional area of the fin P/Ac should be 
as high as possible. This criterion is satisfied by thin plate fins or slender pin fins  

 

 The use of fins is most effective in applications involving low convection heat 
transfer coefficient. Thus, the use of fins is more easily justified when the 
medium is a gas instead of a liquid and the heat transfer is by natural 
convection instead of by forced convection. Therefore, it is no coincidence that 
in liquid-to-gas heat exchangers such as the car radiator, fins are placed on the 
gas side.  

 

When determining the rate of heat transfer from a finned surface, we must 
consider the unfinned portion of the surface as well as the fins. Therefore, the 
rate of heat transfer for a surface containing n fins can be expressed as 
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 We can also define an overall effectiveness for a finned surface as the ratio of the 
total heat transfer from the finned surface to the heat transfer from the same 
surface if there were no fins,  

 

          

 

where 

 Anofin is the area of the surface when there are no fins,  

 Afin is the total surface area of all the fins on the surface, and 

 Aunfin is the area of the unfinned portion of the surface (Figure: next slide_.  

 

 Note that the overall fin effectiveness depends on the fin density (i.e. number of 
fins per unit length) as well as the effectiveness of the individual fins. The overall 
effectiveness is a better measure of the performance of a finned surface than the 
effectiveness of the individual fins.  
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Figure  Various Surface Areas Associated With A Rectangular Surface With Three Fins   



PROPER LENGTH OF THE FIN 

 An important step in the design of a fin is the determination of the appropriate 
length of the fin once the fin material and the fin cross section are specified.  

 

 You may be tempted to think that the longer the fin, the larger the surface area 
and thus the higher the rate of heat transfer. Therefore, for maximum heat 
transfer, the fin should be infinitely long.  

 

 However, the temperature drops along the fin exponentially and reaches the 
environment temperature at some length.  

 

 The part of the fin beyond this length does not contribute to heat transfer since it 
is at the temperature of the environment, as shown in Figure.  

 

 Therefore, designing such an “extra long” fin is out of question since it results in 
material waste, excessive weight, and increased size and thus increased cost with 
no benefit in return (in fact, such a long fin will hurt performance since it will 
suppress fluid motion and thus reduce the convection heat transfer coefficient).  

 



Therefore, fins that are so long that the temperature approaches the environment 
temperature cannot be recommended  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  Temperature Drop along the Fin 



 To get a sense of proper length of a fin, we compare heat transfer from a fin of 

finite length to heat transfer from an infinitely long fins under the same 

conditions. The ratio of these two heat transfers is heat transfer ratio 

 

          

 

 The values of Tanh mL are evaluated for some values of mL and the results are 

given in Table.  
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Table: The variation of heat transfer from a fin relative to that from 

an infinitely long fin  



 We observe from the table that heat transfer from a fin increases with mL 
almost linearly at first, but the curve reaches a plateau later and reaches a value 
for the infinitely long fin at about mL=5. 

 

 Therefore, a fin whose length is L=m/5 can be considered to be an infinitely long 
fin.  

 

 We also observe that reducing the fin length by half in that case (from mL=5 to 
mL=2.5 ) causes a drop of just 1 percent in heat transfer.  

 We certainly would not hesitate sacrificing 1 percent in heat transfer 
performance in return for 50 percent reduction in the size and possibly the cost 
of the fin.  

 In practice, a fin length that corresponds to about mL=1 will transfer 76.2 
percent of the heat that can be transferred by an infinitely long fin, and thus it 
should offer a good compromise between heat transfer performance and the fin 
size.  



Optimization of fin thickness 
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Optimization of fin thickness 
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Optimization of fin thickness 
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Problem 3.2:  

 Steam in a heating system flows through tubes whose outer diameter is D1= 3 cm 

and whose walls are maintained at a temperature of 125oC. Circular aluminium 

fins ( k = 180 W/moC) of outer diameter D2= 6 cm and constant thickness t = 2mm 

are attached to the tube, as shown in the Figure. The space between the fins is 3 

mm, and thus there are 200 fins per meter length of the tube. Heat is transferred 

to the surrounding air at      = 27oC, with a combined heat transfer coefficient of h 

= 60 W/m2 oC. Determine the increase in heat transfer from the tube per meter of 

its length as a result of adding fins. 

Figure 
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Known: Properties of the fin, ambient conditions, heat transfer coefficient, 

dimensions of the fin.  

 

Find: To find the increase in heat transfer from the tube per meter of its length as a 

result of adding fins. 

 

Assumptions:  

1.  Steady operating conditions exist.  

2.  The heat transfer coefficient is uniform over the entire fin surfaces.  

3.  Thermal conductivity is constant.  

4.  Heat transfer by radiation is negligible. 

 

Analysis: 

In the case of no fins, heat transfer from the tube per meter of its length is 

determined from Newton's law of cooling to be, 
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The efficiency of the circular fins attached to a circular tube is plotted in Figure 

3.21. Noting that L = ½(D2– D1) = ½ (0.06 – 0.03) = 0.015m in this case, we have  

 

 

 

 

 

 

Hence,       = 0.95. 
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Noting that the space between the two fins is 3 mm, heat transfer from the unfinned 

portion of the tube is  

 

 

 

Noting that there are 200 fins and thus 200 inter-fin spacings per meter length of the 

tube, the total heat transfer from the finned tube becomes  

 

 

Therefore, the increase in the heat transfer from the tube per meter of its length as a 

result of the addition of fins is  

 

Comments:  

The overall effectiveness of the finned tube is  

 

 

That is, the rate of heat transfer from the steam tube increases by a factor of almost 

10 as a result of adding fins. This explains the widespread use of the finned 

surface.  
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