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Course contents: Heat Transfer

(JCourse Code: 302042

Course Objectives as described by SPPU

1. Identify the important modes of heat transfer and their applications.

Formulate and apply the general three dimensional heat conduction equations.

Analyze the thermal systems with internal heat generation and lumped heat capacitance.
Understand the mechanism of convective heat transfer

Determine the radiative heat transfer between surfaces.
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Describe the various two phase heat transfer phenomenon. Execute the effectiveness and rating

of heat exchangers.

Additional course Objective we will have

To understand, formulate and apply the generalized energy equation for
heat transfer
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Course contents

(1Please refer SPPU curriculum

] Text Books
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F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley.

Y. A. Cengel and A.J. Ghajar, Heat and Mass Transfer — Fundamentals and Applications,
Tata McGraw Hill Education Private Limited.

S.P. Sukhatme, A Textbook on Heat Transfer, Universities Press.

R.C. Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, New Age Science.
P.K. Nag, Heat & Mass Transfer, McGraw Hill Education Private Limited.

M. M. Rathod, Engineering Heat and Mass Transfer, Third Edition, Laxmi Publications,
New Delhi

V. M. Domkundwar, Heat Transfer,
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Course Outcomes

CO 1: Analyze the various modes ol heat transfer and implement the basic heat conduction
equations for steady one dimensional thermal system.

CO 2: Implement the general heat conduction equation to thermal systems with and without internal
heat generation and transient heat conduction.

CO 3: Analyze the heat transfer rate in natural and forced convection and evaluate through
experimentation investigation.

CO 4: Interpret heat transfer by radiation between objects with simple geometries.

CO 5: Analyze the heat transfer equipment and investigate the performance.

Additional course Outcome we will have

Students will be able to apply generalized energy equation to formulate
the heat transfer problem
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General Introduction

Three modes of Heat Transfer: Conduction, Convection
and Radiation

Conduction:

dTransfer of energy from more energetic particles to
less energetic particles

Solids: energy transfer due to lattice
vibrations/waves

dFourier’s law:

q=—kG
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General Introduction

Convection:

Transfer of energy due to bulk fluid motion In
addition to random molecular motion

dNewton’s law of cooling:

g=nh(,—-1,)
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General Introduction

Radiation:
W Transfer of energy due electromagnetic waves

Stefan Boltzmann Law

ot =T

)

Emissivity 568 x 10-8
W/m2k4
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General Introduction

Conservation of energy for a control volume:
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Derivation of Energy Equation

‘LAW OF CONSERVATION OF ENERGY:

Rate of change of Internal Energy of the fluid
inside the CV

= Rate at which Internal Energy (Inflow-Outflow)
+ Rate of Conduction Heat Transfer to the Fluid

+ Heat Generation Rate

[(ﬂ vl ) y+Ay L}J Ax Iq1-+_‘g' Ax
(pul). c,Ay Pul) .\ AV 4. AY i AY
[(va ), ¢,Ax IIL. Ax
Internal Energy Inflow and Conduction Heat
outflow at the boundary Transfer Rate
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Derivation of Energy Equation@#"

+ Rate of change of Internal Energy of the fluid

inside the CV = g( pAxAye,T)

* Internal Energy Rate at (Inflow-Outflow)
%, %,

— (pul’)+—(pvT)

ax oy

= —AxAye V.(puT)

= —AxAyc,

+ Heat Generation Rate: | Ax Ay
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Derivation of Energy Equation ="

+ Conduction Heat Transfer Rate to the Fluid

— q. —q. ...,
ﬂx&y l1m qx ql‘—.-"_"'u.‘li' + lim Jf.l IJ Ay
izl Ax Ay—0 ﬁ}' 1
oq, %4, o°T o°T
— _ixﬁ}* :Il == ,.:{. — ﬂx‘,ﬁyk > + -
o cy oX ox"~

+ Constitutive Relationship: ¢ = —kV T
 Energy Equation

o pT
L )+?.(pﬁT):£V3T+q'
ot c,
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Governing Equations: 2-D Navier-Stokes |

+ Continuity: o (?;V 0

+ X-Momentum: ¢ ¥

0 (PH)+ " (puu)+ O (ﬁ"@)
ot -

: Y-Momenturrg: oXx Gif“ Oy’
o(p0) , 0(pub) , ©(pr¥)
ot 0 x v
. s A
_ _@.‘" cXxX 6}; <
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Governing Equations: 2-D Navier-Stokes |15

* Energy |
@+Gﬂ(pu)+5(ﬂ) k[a?m_i_@zm

t Ox oy c,
« (General |

09 . 0(pug) _2(pvo) :”( 9 0%

_I_
ot oX oy ). Gz 4

~ .2 ~_ 2
ox~ oy

[

}+S¢
..:I""I\...

Unsteady Convection Diffusion ~ Source
where ¢ =u, v, T and

S, =—p/ &x,—Cp/ 0y,q; respectively.

I’ ;= for mom. and (k ‘e, ) for energy equation.
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Non-Dimensional Governing Equation |

 Dimensional G.E

V- (pu)=0

{:f(pﬁ) L o _
— + V. (puu)=—-Vp+uV-u+ X

0 T

°(p )+V.(pET):LVET+q_
ct ' c,

* Non-Dimensional Parameters

X = L: I’r — I . T = f . {T — ia
L, L. L_/u, i,

E;:LP: pq-SZ(T_TIC): (T_TIC)
”r pﬂj (Tﬂ‘ _Tﬂ:) (qu'Lr fk)
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Non-Dimensional Governing Equation | ‘ ",

 Continuity
V.U=0

* Momentum
oU
oT

* Energy
06 1

oV (T6)= Rer) VO +iq

+V-(5’5):—VP+—V2U+X
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Initial and Boundary Conditions
oT a(alr aET]Jr q

——— _I_ -
ot ox® oy’ ) pe,
11C 2BCs  BCs
Initial Condition:- Boundary Conditions:-
At = g} T(_rﬂy}z):Tu 1- Dil‘iﬂh'&l (LEft Wﬂ") - I= T".

2. Neuman :- dT/dn =constant (c)
Bottom Wall: c¢=0;
Right Wall: c=- ¢,,/k

3. Rnbitt} %r mixed (Top Wall):-

al + b—— = const
dn

qmud = Q.mur — _defdy — h (T o Tm;l

hT + k£ =hT_
Insulated dy
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Initial and Boundary Conditions B

* Free Stream Flow and Heat Transfer
across a Cylinder
— Initial Condition: u=0; v=0 and T=T
— Boundary Conditions:
FREE SLIP Cu/ 0y =0,v=0,0T /oy =0

—
:: INLET OUTLET
u=u_ -

s 0 NO SLIP A
v=0 _ o
T=T—» Ty, G ov/cx=0

—_ Wr Hiw o
1 oT'/ dx=0

FREESLIP Ou /Oy =0;v =0,0T /0y =0
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Properties

* Fluid Property * Flow Property
— Density — Velocity
— Dynamic Viscosity — Pressure
— Kinematic Viscosity — Temperature
— Specific Heat — Vorticity
— Coefficient of thermal
Conductivity

— Thermal Diffusivity
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Non-dimensional Parameters for [«
Flow and Heat Transfer

+ Governing Parameters « Engineering Parameters

— Reynolds Number — Skin Friction Coefficient
— Weber Number — Friction Factor

— Fraude Number — Drag Coefficient

— Grashof Number — Lift Coefficient

— Prandtl Number — Strouhal Number

— Nusselt Number
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Mathematical Character of PDETI i

« Second order

~2 ~2 ~2 6:1 6
422,872  c2? Y E?  Fp-G(x.y)
0 x CxXOy oy OX oy

— Homogeneous (G=0) and Non-Homogeneous
— Linear, Quasilinear and Nonlinear

— Elliptic (B*-4A4C<0, Equilibrium Prob.)

— Parabolic (B?-44C=0, Marching Prob.)

— Hyperbolic (B*-44C>0, Marching Prob.)

* Navier-Stokes Equations

— Combined Elliptic-Parabolic Nonlinear Equations
(Initial-Boundary value Prob.)
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Classifi

Elliptic Equation: Boundary Value Prob.

o°¢p 0O
e 0P

,J

ox~  Oy°

cation of Governing
Equations
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)| A=C=LB=0
[= B*-44C <0

Parabolic Equation: Initial-Boundary-Value Prob.
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Equation: Initial-Boundary-Value Prob.

A=1:B=0;C =—c¢
— B —4A4AC=c">0

v
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THE THERMAL PROPERTIES OF MATTER

THERMAL CONDUCTIVITY

e Thermal conductivity of a material is defined as the rate of heat
transfer through a unit thickness of the material per unit area
per unit temperature difference.

e The thermal conductivity of a material is a measure of how fast
heat will flow in that material.

e A large value for thermal conductivity indicates that the material
is a good heat conductor,

e A low value indicates that the material is a poor heat conductor
or insulator.



Pure Metals

|
Alloys

Non-Metallic Solids
Insulation Systems

Liquids

Fases

0.01 0.1 1 10 100 1000

o

Thermal Conductivity K (W/mK)

Figure: Range of thermal conductivity for various states of matter at
normal temperature and pressure
Note that the thermal conductivity of a solid may be more than four orders
of magnitude larger than that of a gas.
This trend is largely due to differences in intermolecular spacing for the
two states.



TYPICAL VALUES OF h

Process h (W/m?.K)
Free convection

Gases 2-25

Liquids 50-1000
Forced Convection

Gases 25-250
Liquids 50-20000
Boiling and condensation 2500-1,00,000



TYPES OF CONVECTION

20°C

FORCED CONVECTION 5m/s

”

NATURAL CONVECTION

Warmer air
rising

AIR
0
\ /
L
BOILING AND CONDENSATION - involve phase change
& 80°C

Boiling -
AN

Heating

Droplets



Problem: A 2 m long, 0.3 cm diameter electrical wire extends across a room at 15° C as
given in schematic. Heat is generated in the wire as a result of resistance heating, and
the surface temperature of the wire is measured to be 152° C in steady operation.
Also, the voltage drop and electric current through the wire are measured to be 60 V
and 1.5 A, respectively. Disregarding any heat transfer by radiation, determine the
convection heat transfer coefficient for heat transfer between the outer surface of the
wire and the air in the room.

Known: wire dimensions, room temperature, surface temperature of the wire,
voltage drop and electric current through the wire.
Find: convection heat transfer coefficient between the outer surface of the wire and
the air in the room.

152°C

T, =15°C
1.5A

=]

60V
Assumptions:
*Steady operating conditions exist since the temperature readings do not change
with time
*Radiation heat transfer is negligible.



Analysis
When steady operating conditions are reached, the rate of heat loss from the wire will
equal the rate of heat generation in the wire as a result of resistance heating.

0=E,pratea = VI = 60(1.5) = 90 W

That is, the surface area of the wire is

A=nDL = 7 (0.003)(2)=0.01885 m?

Newton’s law of cooling for convection heat transfer is expressed as
O=hA(T,-T,)

Disregarding any heat transfer by radiation and thus assuming all the heat loss from
the wire to occur by convection, the convection heat transfer coefficient is to be
determined to be ;

0 90

e = =349W /m*.C
A(Ts-T,) (0.01885) (152—15)

Comments:
Note that the simple setup described above can be used to determine the average
heat transfer coefficients from a variety of surfaces in air. Also, heat transfer by

radiation can be eliminated by keeping the surrounding surfaces at the temperature of
the wire.



Problem: The hot combustion gases of a furnace are separated from the ambient air
and its surroundings, which are at 25° C, by a brick wall 0.15 m thick. The brick has a
thermal conductivity of 1.2 W/m.K. Under steady state conditions an outer surface
temperature of 100° C is measured. Free convection heat transfer to the air adjoining
the surface is characterized by a convection coefficient of h = 20 W/m?2.K. What is the
brick inner surface temperature. Neglect any heat transfer by radiation.

Known: outer surface temperature of a furnace wall of prescribed thickness, thermal
conductivity, ambient conditions
Find: Wall inner surface temperature

T,=100°C

|
\ T, =25°C
|
|

q”conv Too =25°C
TT h =20 W/m2K

oy

L=0.15m | >

Ty

Combustion

”

qcond
e




Assumptions:

1. Steady state conditions

2. Onedimensional heat transfer by conduction across the wall
3. Radiation heat transfer is neglected

Analysis:
The inside surface temperature may be obtained by performing an energy balance at
the outer surface.

E.-E . =0
it follows that, on a unit area basis,

Uona = Gomy = 0= K122 = (T, - T,)

T, — 100

1.2 =20(100 — 25)= T, = 287.5°C

Comments
Brick surface temperature is high



Heat Conduction

General heat diffusion equation in coordinate free form:

Ol -
PG| —+ VT =kV°T +q

Heat diffusion equation in Cartesian coordinates:

ox\ ox ) oy\ oy ) oz\l oz P ot

Heat diffusion equation in Cartesian coordinates if
thermal conductivity is constant:

o'T o*T 0T ¢ 10T
+ + ¥
x> oyt gt kK a o
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Heat Conduction

Heat diffusion equation in Cartesian coordinates if heat
transfer is steady state:

% (kaT)+ ¢ kaT +£(ka—Tj+ qg =0
ox\_ ox ) oyl Oy oz\ 0z

If the heat transfer is one dimensional (e.g., in the x direction) and
there is no energy generation , above equation reduces to

i(kd_T) S
dx\ dx

The most important implication of this result is that under steady state, one
dimensional conditions with no energy generation, the heat flux is a constant in the
direction of heat transfer
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BOUNDARY AND INITIAL CONDITIONS

To determine the temperature distribution in a medium, it is
necessary to solve the appropriate form of the heat equation.

However, such a solution depends on the physical conditions existing
at the boundaries of the medium and, if the situation is time
dependent, on conditions existing in the medium at some initial time.

Because the heat equation is second order in the spatial coordinates,
two boundary conditions must be expressed for each coordinate to
describe the system.

Because the equation is first order in time, however, only one
condition, termed the initial condition, must be specified.

The three kinds of boundary conditions commonly encountered in
heat transfer are summarized in Table 2.1.



The conditions are specified at the surface x = 0 for a one-dimensional system.

Heat transfer is in the positive x direction with the temperature distribution,
which may be time dependent, designatedas T( x, t ) .

The first condition corresponds to a situation for which the surface is
maintained at a fixed temperature T.. It is commonly termed a Dirichlet
condition, or a boundary condition of the first kind.

Example: when the surface is in contact with a melting solid or a boiling liquid.
In both cases there is heat transfer at the surface, while the surface remains at
the temperature of the phase change process.

The second condition corresponds to the existence of a fixed or constant heat 4,
flux at the surface. This heat flux is related to the temperature gradient at
the surface by Fourier's Law, which may be expressed as

" ——ka—T
N A (2.21)



e The second condition is termed as Neumann condition, or a boundary
condition of the second kind, and may be realized by bonding a thin film or
patch electric heater to the surface.

A special case of this condition corresponds to the perfectly insulated,
or adiabatic, surface for which

« The boundary condition of the third kind corresponds to the existence
of convection heating (or cooling) at the surface and is obtained from the
surface energy balance.



ONE-DIMENSIONAL STEADY STATE CONDUCTION

e |n a one-dimensional system, temperature gradients exist along
a single coordinate direction, and heat transfer occurs

exclusively in that direction.

e The system is characterized by steady state conditions if the
temperature at each point is independent of time.

THE PLANE WALL

For one dimensional conduction in a plane wall, temperature is a function of
the x coordinate only and heat is transferred exclusively in this direction.

In Figure 2.5, a plane wall separates two fluids of different temperatures.

Heat transfer occurs,

* by convection from the hot fluid at 1. to one surface of the wall at 7},

e by conduction through the wall, and

e by convection from the other surface of the wall at Z;» to the cold fluid at 7.,



ONE DIMENSIONAL STEADY STATE HEAT
TRANSFER IN PLANE WALL

m

Hot Fluid Cold Fluid

VAVT +q" = %( pCT)



ONE DIMENSIONAL STEADY STATE CONDUCTION
HEAT TRANSFER IN PLANE WALL

L VAVT +q =-—%oC,T)
Ot
No heat generation steady
d(, oT

X
Temperature distribution along x direction is T( )= (Ts 2 —Ts 1) Ts 1



ONE DIMENSIONAL STEADY STATE CONDUCTION
HEAT TRANSFER IN PLANE WALL

Steady state heat transfer rate along x direction:

dT kA

— kA =
L

dx

(Ts,l _Ts,2)

Steady state heat flux along x direction:

Note that both the heat rate g, and heat flux q”,
independent of x.

"
dx =

dy

A

= Z(Ts,l

_Ts,2)

are constants,



THERMAL RESISTANCE FOR HEAT TRANSFER IN
PLANE WALL

dThere exists an analogy between the diffusion of heat and
electrical charge.

dThermal resistance may be associated with the conduction of
heat in the same fashion as an electrical resistance is associated

with the conduction of electricity.

Defining resistance as the ratio of a driving potential to the
corresponding transfer rate IT follows that the thermal resistance
for conduction is

_(Ts,l_Ts,Z) L

R =
t,cond q, kA

Similarly, for electrical conduction, Ohm's law provides an
electrical resistance of the form

R = (Es,l _ES,Z) 15 L
£ l oA




THERMAL RESISTANCE FOR HEAT TRANSFER IN
PLANE WALL: AN ELECTRICAL ANALOGY

Thermal resistance for conduction

. Heat Flow

_ (?:,1 ‘?;,zjl L

K- ! B A
E_;fj ._/\/\/\—.. E_;j'
B
R _(Ts,l_Ts,Z)_ L
t,cond — —



THERMAL RESISTANCE FOR HEAT TRANSFER IN
PLANE WALL: AN ELECTRICAL ANALOGY

Thermal resistance for convection

Ts

Tm;h
T ._/\/\/\—-.Tm

q=hA(T,~T,) g, -BT) L




THERMAL RESISTANCE FOR HEAT TRANSFER IN
PLANE WALL: AN ELECTRICAL ANALOGY

Thermal resistance network for heat transfer through a plane wall

T,

Too,1 hl xX=0 x=L Too,2 h2
Hot Fluid Cold Fluid
qx
—_——
TOO,l E,l ﬂ,2 Too,g
.—/\{l\/\_._/\/l\l/\_._/\/\/\_l.

h. A kA h.A



THERMAL RESISTANCE FOR HEAT TRANSFER
IN PLANE WALL: AN ELECTRICAL ANALOGY

Under steady state conditions, we have

Rate of Heat Convection | ( Rateof Heat Conduction | ( Rateof Heat Convection
int o the Wall J throughthe Wall & from the Wall

kA

o h’lA(Too,l _Ts,l) i (Ts,l_Ts,Z)—

sor mA(T, ,-T,,,)

_(Too,l_Ts,l) (Tsl_Ts 2) ( S oo, )

qx % 1
I i
In terms of overall temperature difference ¢.=

. All resistances between the driving AT , T;- T,
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(Lo1~Tos)
Z Rt

9y =

THERMAL RESISTANCE FOR HEAT TRANSFER IN|&Z.=
COMPOSITE WALL: AN ELECTRICAL ANALOGY &4

() o] (520)

In terms of overall heat transfer coefficient

L= ARCTARCTARCTAREn)

AT 1
R, =ZRtot o q =
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THERMAL RESISTANCE FOR HEAT TRANSFER IN|&£ .S
COMPOSITE WALL: AN ELECTRICAL ANALOGY

Composite walls may also be Is Ia
characterized by series-parallel . ke o
configurations o H|L
E kg G k
qg=49;*q;
Lr
AT AT ki (A/2)
k 3 A
L L ;
f 4 LecalVis ST H
PVAVAVA NS "\ N\,
(4, wm) () ; :
VAV VA
Lg
ks (A/2)
LE LF LG
k;(A/2) kp(A/2)  ks(A/2)
T_/\/\/\_.—/\/\/\_._/\/\/\_.
gk 11
_ LG LG ]
k. (A/2) (A/2 )k (A/2) ko (A/2)
LARR o AAA o AAALL
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THERMAL RESISTANCE FOR HEAT TRANSFER IN|&£ 5%
COMPOSITE WALL: AN ELECTRICAL ANALOGY

Contact Thermal Resistance

An interface will contain numerous air gaps of varying sizes that act
as insulation because of the low thermal conductivity of air.
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THERMAL RESISTANCE FOR HEAT TRANSFER IN,;«
COMPOSITE WALL: AN ELECTRICAL ANALOGY

Thus, an interface offers some resistance to heat transfer, and
this resistance per unit interface area is called thermal contact
resistance, R,. given by o R

t,c '
dx

eFor solids whose thermal conductivities exceed that of the
interfacial fluid, the contact resistance may be reduced by
increasing the area of the contact spots.
eSuch an increase may be effected by increasing the joint pressure
and/or by reducing the roughness of the mating surfaces.
eThe contact resistance may also be reduced by selecting an
interfacial fluid of large thermal conductivity.
eIn this respect, no fluid (an evacuated interface) eliminates
conduction across the gap, thereby increasing the contact

rESIStance' C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA




PROBLEM 2.2

A leading manufacturer of household appliances is proposing a self-cleaning
oven design that involves use of a composite window separating the oven cavity
from the room air. The composite is to consist of two high temperature plastics
(A and B) of thicknesses L,= 2L, and thermal conductivities k,=0.15 W/m.K and
k= 0.08 W/m.K. During the self-cleaning process, the oven wall and air
temperatures, T, and T_, are 400°C, while the room air temperature 7, is 25°C.
The inside convection and radiation heat transfer coefficients h; and h,, as well
as the outside convection coefficient h, are each approximately 25 W/m?.K.
What is the minimum window thickness, L=L,+L;,, needed to ensure a
temperature that is 50°C or less at the outer surface of the window? This

temperature must not be exceeded for safety reasons



Figure: |
Composite Mt NPREN Y e el

T.=400 & - .
h,=25W/nfK F %

T.=400 C @ - i i

hi=25W/mK I \'/

— B k,=0.08W/mK

il (0 150k
To—=25 C

O ho=25W/ni’K

Known: The properties and relative dimensions of plastic materials used for a
composite oven window, and conditions associated with self-cleaning operation

Oven cavity

TSO\SO

Find : Composite thickness L, + L; needed to ensure safe operation



Steady state conditions exist
Conduction through the window is one dimensional
Contact resistance is negligible

Radiation absorption within the window is negligible; hence no internal heat
generation

Radiation exchange between window outer surface and surroundings is
negligible
Each plastic is homogeneous with constant properties

The thermal circuit can be constructed by recognizing that resistance to heat
flow is associated with convection at the outer surface, conduction in the
plastics, and convection and radiation at the inner surface. Accordingly, the
circuit and the resistances are of the following form:

L~T ._/\/\/\_._/\/\ 5 _/\/\/\_.°

kBA h ()




or

Since the outer surface temperature of the window, T, is prescribed, the
required window thickness may be obtained by applying an energy
balance at this surface. That is, from Equation 1.7

e

n out
where, with T, =T,
E Ta _Tso
n =q4= ’
2R

and

Eout :q:ho A(Ts,o _TOO)

The total thermal resistance between the oven cavity and the outer
surface of the window includes an effective resistance associated with
convection and radiation, which act in parallel at the inner surface of the
window, and the conduction resistances of the window materials. Hence,

Bl
e Ry

-1
>R = + +
1 1
(A,A ArA] kA kgA




L L
>R LI O
Alh+h Tk, 2k,

substituting into the energy balance, it follows that

la 1 =1, (T, = Ty)

k) 4 L + La M
(h+h,)
ko )\ 2k,

hence for solving L,

04(400—50

50 25j_ SR
s =(.0418
(170.15 +1/0.16)

A



since Ly =L,/2 =0.0209 m,
L=L+L;=0.0627m=62.7mm

The self cleaning operation is a transient process, as far as the thermal
response of the window is concerned, and steady state conditions may not be
reached in the time required for cleaning. However, the steady state
condition provides the maximum possible value of T, and hence is well
suited for the design calculation.

Radiation exchange between the oven walls and the composite window
actually depends on the inner surface temperature T, , and although it has
been neglected, there is radiation exchange between the window and the
surroundings, which depends on T, ..

A more complete analysis may be made to concurrently determine 7, ; and T, .
Approximating the oven cavity as a large enclosure relative to the window
and applying an energy balance, equation 1.12, at the inner surface it follows
that

" 11 n
qrad ) + qconv,i e qcond



or

or

Ts 00 T:v 0
55(va,i_7fi)+hi(Ta_Ts,i): ( : : )

(La/ky)+(Lg/kp)
Approximating the kitchen walls as a large isothermal enclosure relative to the
window, with Tandthis time applying energy balance at the outer

surface, it follows that

n " n
qcond i qrad ,0 + qconv,o

(LT}
(LA/kA)+(LB/kB)

=eo(T!, -T2, )+ 1, (T, - T,.)

S,0

If all other quantities are known, Equations 1 and 2 may be solved for
T.;and T,

We wish to explore the effect on T,, of varying velocity, and hence the
convection coefficient, associated with airflow over the outer surface. With € =
0.9 and all other conditions remaining the same, equations 1 and 2 have been
solved for values of h, in the range 0<h <100 W/m? K and the results are
represented graphically.
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Increasing h, reduces the corresponding convection resistance, and a value of
h, =30 W/m? K would vyield a safe to touch temperature of
T, ,=43°C. Because the conduction resistance is so large, the change h, in has
a negligible effect on T,; . However it does influence the outer surface

temperature, andasp, o , T,, > ©



ONE DIMENSIONAL STEADY STATE CONDUCTION
WITH HEAT GENERATION

2 m
T
0 4

=0
ox* k

G |
A P pe e i A e
ki 2 T

Constant wall temperature BC: T(—L) i Tl T(L) 3 T2

"2 2
T(x)=—1 L 1—x—2 +T2 T1x+T1+T2
k2 L 2 L 2

Verify



ONE DIMENSIONAL STEADY STATE CONDUCTION
WITH HEAT GENERATION

Note:

U Temperature gradient is dependent on x whereas it was
iIndependent of x in slab without heat generation

d Temperature distribution in case of heat conduction with
heat generation is dependent on thermal conductivity (k).
It is independent of k in slab without heat generation.



ONE DIMENSIONAL STEADY STATE CONDUCTION

WITH HEAT GENERATION
T R

BC in terms of h same on both sides : 7 : >

h,T h,T,

o0

Energy balance gives

q (2L) — x
2

WT, -T.,) =

AdditionalBC: 4L _
dx x=0

T ¢

Governing equation SR, Ul O

ox> k



ONE DIMENSIONAL STEADY STATE CONDUCTION
WITH HEAT GENERATION

g L x> T,-T, x T+T
T(x)——— e mcloh Rt G
k2 L Ay 2
2
T(x)—q—iil—x—z]+7; AP E R S
k 2\ L dx k A
Boundary Condition: _kd_T =h(T -T))
doer R
S h (0.0)

q L x*) gL
Thus T(X)—?z(l—E]—F—'FTOO



ONE DIMENSIONAL STEADY STATE CONDUCTION
WITH HEAT GENERATION

BC in terms of h known on wall:

hZ’ T002 i hl’Tool

E oA |

qu X2L = h’IA(Twl R Tool) s h2A(Tw2 25 ool)
Thus, 2g L=hT,, ~hT,, +hT,-hT,,

Obtain the solution for this case



THE CYLINDER

Consider a hollow cylinder, whose inner and outer surfaces are exposed to

fluids at different temperatures. For steady state conditions with no heat
generation, the appropriate form of the heat equation,

11 krd—T =0
rdr dr

where, for a moment k is treated as a variable. The physical significance of this
result becomes evident if we also consider the appropriate form of Fourier's

law. The rate at which energy is conducted across the cylindrical surface in the
solid may be expressed as

qrz_kAd_T=_k(27er)d—T Equation A
dr dr

where A = 2ntrL is the area normal to the direction of heat transfer.

dr
NOTE: Since, above equation prescribes that the quantity krﬁis independent of

r, it follows that the conduction heat transfer rate g, (not the heat flux ;4 ) isa

constant in the radial direction.
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Figure : Hollow Cylinder With Convective Surface Conditions

Assuming the value of k to be constant, above equation may be integrated
twice to obtain the general solution

I'(r)=C,lnr+C,

Applying the boundary conditions to the general solution,
i.e.T(r;)=T ,and T(r,) =T, , we obtain,



S

Solving for C,and C, and substituting into the general solution, we then obtain

T,,-T
T(r )=Mln[r—j+Ts’2

()
r

NOTE: that the temperature distribution associated with radial conduction through
a cylindrical wall is logarithmic, not linear, as it is for the plane wall. The
logarithmic distributionis shown in Figure.

If the temperature distribution equation, is now used with Fourier's law, we
obtain the following expression for the heat transfer rate:

27 Lk(T,, T, ,)

q’
( )
1




From this result it is evident that, for radial conduction in a cylindrical wall, the
thermal resistance is of the form
In (’%)
g s

t,cond ~— 27 Lk

This resistance is shown in Figure. Note that since the value of g, is
independent of r, the foregoing result could have been obtained by using the
alternative method, that is, by integrating Equation A.

Consider now the composite system. Recalling how we treated the composite
plane wall and neglecting contact resistances between the interface, the heat
transfer rate may be expressed as

T 1 _Too,2

o0

[1} (%) : (%) . (%) +(1]

9=

2z Lh 2k, L 2rky L 2rkq L 2zxryLh,

The above result may also be expressed in terms of an overall heat transfer
coefficient. That is,



Tool_Too4
q, = R =UA(Too,1

tot

i Too,4)

If U is defined in terms of the inside area, A,=2nr,L Equations 2.47 and 2.48
may be equated to yield

1

1+rlln(r2/)+rlln('y)+rlln('yj+rl1
hy k, n) kg 2) ke I3) ry hy
Note:

e UA s constant, while U is not

U=

e Inradial system q” is constant, while g is not
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h2nil  2nkgl — 2nkgl  2nkcl  hy2nrl

Figure :Temperature Distribution For A Composite Cylindrical Wall



Objectives

e One dimensional steady conduction in sphere is introduced
e The approach is to reduce the heat diffusion equation for the case chosen.

e Using the appropriate boundary conditions, the heat diffusion equation is
solved for temperature distribution.

e Concept of critical radius of insulation is presented.

THE SPHERE

Consider a hollow sphere, whose inner and outer surfaces are exposed to fluids
at different temperatures (Fig. 2.14).

Figure: Conduction in a spherical shell



For steady state conditions with no heat generation, the appropriate form of
the heat equation,

1d(,aT)
r2 dr dr

where, for a moment k is treated as a variable. The physical significance of this
result becomes evident if we also consider the appropriate form of Fourier's
law. The rate at which energy is conducted across the cylindrical surface in the
solid may be expressed as

=—kAd—T=—k(47zr2)d—T
dr dr

where A =4nr?is the area normal to the direction of heat transfer. Since,

; : T p(re A
above equation 2.50 states that the quantity &r° < is independent of r, it
follows that the conduction heat transfer rate q,”('ﬁot the heat flux q,") is a
constant in the radial direction.

Assuming the value of k to be constant, above equation may be integrated
twice to obtain the general solution



T(r)=Sc,
r

Applying, the following boundary conditions
T(r,) = T, and T(r,) = T,
we then obtain

Solving for C,and C, and substituting into the general solution, we then obtain

I, ,-T.,|1 1
T(r)=T,+ it SR g
Y s
o h
Note that the temperature distribution associated with radial conduction

through a spherical wall is not linear, as it is for the plane wall under the same
conditions.



If the temperature distribution equation is now used with Fourier's law,
Equation 2.51, we obtain the following expression for the heat transfer rate:

4z k(Ts’l—Ts,z)
LT,
n _"2

From this result it is evident that, for radial conduction in a spherical wall, the
thermal resistance is of the form

Note that since the value of g, is independent of r , the above result could
have been obtained by using the alternative method, that is, by integration

Equation dT

dT
IS} N MR s B il
s dr v )dr

Spherical composites may be treated in much the same way as composite
walls and cylinders, where approximate forms of the total resistance and
overall heat transfer coefficient may be determined



Problem 2.3

A spherical thin walled metallic container is used to store liquid nitrogen at 80 K.
The container has a diameter of 0.5 m and is covered with an evacuated,
reflective insulation composed of silica powder. The insulation is 25 mm thick,
and its outer surface is exposed to ambient air at 310K. The convection
coefficient is known to be 20 W/m? K. The latent heat of vaporization and the
density of the liquid nitrogen are 2 x 10°J/kg and 804 kg/m3, respectively.
Thermal conductivity of evacuated silica powder (300 K) is 0.0017 W/m.K

e what is the rate of heat transfer to the liquid nitrogen ?
e what is the rate of liquid boil-off ?

Figure

~Thin walled spherical
container 5=0.25 m

i)
Il

. 2=310K
h=20W/m” KN

Insulation outer
surface 5K=0.275 m

Liguid Nitrogen
Too,1=80K

“ q ;}—H[MI{&-’M
.'E:.'II o —2 X 101 Jkg



Known: Liquid nitrogen is stored in spherical container that is insulated and

Find:

exposed to ambient air.

e The rate of heat transfer to the nitrogen.
e The mass rate of nitrogen boil-off.

Assumptions:

1.  Steady state conditions

2.  Onedimensional transfer in the radial direction

3. Negligible resistance to heat transfer through the container wall and from the
container to the nitrogen

4. Constant properties

b, Negligible radiation exchange between outer surface of insulation and
surroundings

Analysis:

1. The thermal circuit involves a conduction and convection resistance in series and

is of the form

CAAALAAAT
o 9

Rt,cond R t,conv



where, from Equation 2.55

and from Equation 2.30

R hA s h(47[ 1’22 )

The rate of heat transfer to the liquid nitrogen is then
TOO,2 1 T

00,1

(1/47k)[(1/ 1) = (1/7)] + (1/ hdz 13

31080
(1/47(0.0017))[ (1/0.25) - (1/0275) ] +(1/(20) 47 (0.275)’

R0
17.02+0.05

q:

=13.47TW

q

2. Performing an energy balance for a control surface about the nitrogen, it follows
from Equation 1.7 that



Where E, =g andE,, = mh,, is associated with the loss of latent energy due to
boiling. Hence,
q—mhg =0

and the boil off is,
g 13.47

hfg g 2%x10°

= 6.74x107 kg/s

m =

The loss per day is
i =6.74x107" kg /s x 3600s/hours x 24 hours/day

m =5.82kg/day
or on a volumetric basis
o m _ 5.82kg/day

2 = 0.00724m>/day = 7.24liters/da
p  804kg/day fday fday

Comments:

1. Rt,conv ] Rt,cond

2.With a container volume of (4/3)( zx’) =0.065 m3= 65 litres, the daily loss to
(7.24liters/65 liters) 100% = 11.14% of capacity.
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STEADY STATE HEAT CONDUCTION
SYSTEM WITH HEAT GENERATION

IN RADIAL |¢&n-

Boundary conditions:

dT

L B :
dr -0 T(ro) T:s‘
G Che e

2 2

qr r
T(ry=—%\1-— |+T
") 4k( rzj ’




STEADY STATE HEAT CONDUCTION IN RADIAL|¢
SYSTEM WITH HEAT GENERATION

In terms of outside conditions the BCs may be implemented
considering conduction equal to convection:

Thus :
q(I1r’L) = h(21r,LXT. -T.)

RS
2h

L |
T(ry=Le|1-Z 241 + Lo
4k 2h

rO



THE CRITICAL RADIUS OF INSULATION

We know that by adding more insulation to a wall always decreases
heat transfer.

This is expected, since the heat transfer area A is constant, and adding
insulation will always increase the thermal resistance of the wall
without affecting the convection resistance.

However, adding insulation to a cylindrical piece or a spherical shell, is
a different matter.

The additional insulation increases the conduction resistance of the
insulation layer but it also decreases the convection resistance of the
surface because of the increase in the outer surface area for
convection.

Therefore, the heat transfer from the pipe may increase or decrease,
depending on which effect dominates.



Consider a cylindrical pipe (Figure. 2.15), where,
r, ..outer radius
T, _constant outer surface temperature
k _thermal conductivity of the insulation
r,.outer radius

- temperature of surrounding medium
h - convection heat transfer coefficient

T nsulatjdh

P M,
1] R i |

)
s | A(’on v

I
1‘,
/

Figure Insulated Cylindrical Pipe



The rate of heat transfer from the insulated pipe to the surrounding air can be
expressed as

(1;-T,)

q, = 2
2
’”(/1) 1
+

27w Lk h(27zr2 L)

The variation of heat transfer rate with the outer radius of insulation r, is plotted
in Figure. The value of r, at which heat transfer rate reaches maximum is

determined from the requirementthat 94, (zero slope).
dr

Performing the differentiation and solving for r, gives us the critical radius of
insulation for a cylindrical body to be

k

F cr cylinder L

> |

NOTE: The rate of heat transfer from the cylinder increases with the addition of
insulation for r,< r_, reaches a maximum when r,= r_, and starts to decrease for

r,> r. Thus, insulating the pipe may actually increase the rate of heat transfer
from the pipe instead of decreasingit when r,<r_, .
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Figure : Variation Of Heat Transfer Rate With Radius



The important question to answer at this pointis,

e Whether we need to be concerned about the critical radius of insulation when
insulating hot water pipes or even hot water tanks?

e Should we always check and make sure that the outer radius of insulation
exceeds the critical radius before we install any insulation?

Probably not, as explained below.

e The value of the critical radius r_, will be the largest when k is large and h is
small.

e Noting that the lowest value of h encountered in practice is about 5 W/m?K
for the case of natural convection of gases

e Also, the thermal conductivity of common insulating materials is 0.05 W/mZK,
e The largest value of the critical radius we are likely to encounter is

k : :
2 max,insulation 4 0.05 —0.01m=10mm

cr h

min

e This value would be even smaller when the radiation effects are considered.



e The critical radius would be much less in forced convection, often less than 1
mm, because of much larger h values associated with forced convection.

e Therefore, we can insulate hot water or steam pipes freely without worrying
about the possibility of increasing the heat transfer by insulating the pipes.

e The radius of electric wires may be smaller than the critical radius.

e Therefore, the plastic electrical insulation may actually enhance the heat
transfer from electric wires and thus keep their steady operating
temperatures at lower and thus safer levels.

Similarly for a sphere, it can be shown that the critical radius of insulation for a
spherical shell is

2k
Ver sphere = 7

where k is the thermal conductivity of the insulation and h is the convection heat
transfer coefficient on the outer surface.



Problem 2.4:

A 3 mm diameter and 6 m long electric wire is tightly wrapped with a 2 mm
thick plastic cover whose thermal conductivity is kK = 0.15 W/m.°C. Electrical
measurements indicate that a current of 10 A passes through the wire and
there is a voltage drop of 8 V along the wire. If the insulated wire is exposed to
a medium at 27°C with a heat transfer coefficient of h=12 W/mZ.°C, determine
the temperature at the interface of the wire and the plastic cover in steady
operation. Also determine whether doubling the thickness of the plastic cover
will increase or decrease this interface temperature.

Figure

plastic cony



Known : Size of the electric wire, thermal conductivity of the wire, current and

voltage supplied to the wire, ambient conditions and heat transfer

coefficient.

Find :
Convection heat transfer coefficient between the outer surface of the wire and the

air in the room.

1. Heat transfer is steady since there is no indication of any change with time.

2. Heat transfer is one dimensional since there is thermal symmetry about the
center line and no variation in the axial direction.

3.  Thermal conductivities are constant.

4.  The thermal contact resistance at the interface is negligible.

5. Heat transfer coefficient incorporates the radiation effects, if any.

Analysis:

Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heating is generated uniformly throughout
the wire and is transferred to the surrounding medium in the radial direction.
In steady operation, the rate of heat transfer becomes equal to the heat
generated within the wire, which is determined from

Q=VI=8(10)=80W



The thermal resistance network for this problem involves a conduction

resistance for the plastic cover and a convection resistance for the outer surface

in series, as shown in Schematic. The values of these two resistances are
determined to be

A, =2z1, L = 27(0.0035)(6) = 0.132m”

RCOI]V " 1 e 1
hA ~ 12(0.132)

=0.63degC/W

In(n/n) In(3.51.5)
Saste =702k 272(0.15)6

=0.15degC/W

and therefore

R, oto= Riotar * Reony = 0.63+0.15=0.78 °C/W
Then the interface temperature can be determined from
T-T,

R

total

Tyl ok QRtotal

T, =27 +80(0.78)
= 89.4°C

0 =




Note that we did not involve the electrical wire directly in the thermal resistance
network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical radius of
insulation of the plastic cover.

r, = AL 0.0125m =12.5mm
h 12

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius of
the cover reaches 12.5 mm. As a result, the rate of heat transfer will increase
when the interface temperature T, is held constant.

It can be shown by repeating the calculations above for a 4 mm plastic cover that
the interface temperature drops to 77.54°C when the thickness of the plastic
cover is doubled. It can also be shown in a similar manner that the interface
reaches a minimum temperature of 71.14°C when the outer radius of the plastic
cover equals the critical radius.
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SUMMARY OF 1-D STEADY STATE CONDUCTION

Many important problems are characterized by one-dimensional steady-state
conduction in plane, cylindrical or spherical walls with or without thermal
energy generation. Key results for these geometries are summarized in Table on
next slide, where AT refers to the temperature difference, T, T, 5, between the
inner and outer surfaces identified in the corresponding figures earlier. In each
case, beginning with the heat equation, you should be able to derive the
corresponding expression for the temperature distribution, heat flux, heat rate,

and thermal resistance.



Plane Wall Cylindrical Wall | Spherical Wall
Z 1 d dT
. e 1d(,,40) o | =Ll =0
Heat Equation 2 Dol AT r? dr dr
AT =05
Te.mp.erat.ure e AT I LT [___}
Distribution 5 (r ) r 19 s i
L In| 1 2 A
6) n K
Heat Flux (q” ) k AT kAT
AT 11
ko rin| 2 A
¥ 4] )
2w Lk AT 4k AT
AT 3 11
Heat Rate (q) kAT ln( 2 ) _j
1"1 2 r
1 R
Thfermal : ln(’%j e
Resistance iz 1 A
kA
(Rt, cond) ST A k

Table : One-Dimensional Steady State Solutions to the Heat Equation With
No Generation




HEAT TRANSFER FROM EXTENDED SURFACES

Objectives

eThe significance of enhancing the heat transfer by using fins or extended surfaces
is presented initially.

e A general form of the energy equation for one dimensional conditions in an
extended surface is derived.

INTRODUCTION
eThe term extended surface is commonly used in reference to a solid that
experiences energy transfer by conduction within its boundaries, as well as

energy transfer by convection (and/or radiation) between its boundaries
and the surroundings. (Fig. 3.1)

e A strut is used to provide mechanical support to two walls that are at different
temperatures.

oA temperature gradient in the x-direction sustains heat transfer by conduction
internally, at the same time there is energy transfer by convection from the
surface.
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Figure: Combined Conduction And Convection In A Structural Element

e The most frequent application is one in which an extended surface is used

specifically to enhance the heat transfer rate between a solid and an
adjoining fluid.

e Such an extended surface is termed a fin.



Consider a plane wall of Figure (next slide).

where,

T, -- the surface temperature

T -- temperature of surrounding medium

The rate of heat transfer is given by Newton's law of cooling as

Qconv =hA(]-; _Too)

where
A -- the heat transfer area
h -- is the convection heat transfer coefficient.

NOTE:

If T_is fixed, there are two ways in which the heat transfer rate may be increased.
The convection coefficient h could be increased by

¢ Increasing the fluid velocity

e The fluid temperature T_ could be reduced



¢ )
. > - A
o //
q=hA(Ts-1x)
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Figure: Use Of Fins To Enhance Heat Transfer From A Plane Wall (A) Bare
Surface (B) Finned Surface

LIMITATIONS:

e Many situations would be encountered in which increasing h to the maximum
possible value is either insufficient to obtain the desired heat transfer rate or
the associated costs are prohibitively high.



Such costs are comprised of the blower or pump power requirements needed
to increase h through increased fluid motion.

Moreover, the second option of reducing 7, _is often impractical.

A third option.

That is, the heat transfer rate may be increased by increasing the surface area
across which the convection occurs.

This may be done by providing fins that extend from the wall into the
surrounding fluid.

The thermal conductivity of the fin material has a strong effect on the
temperature distribution along the fin and therefore influences the degree to
which the heat transfer rate is enhanced.

Ideally, the fin material should have a large thermal conductivity to minimize
temperature variations from its base to its tip.

In the limit of infinite thermal conductivity, the entire fin would be at the
temperature of the base surface, thereby providing the maximum possible heat
transfer enhancement.



APPLICATIONS:

There are several fin applications,

e the arrangement for cooling engine heads on motorcycles and lawn-mowers
or

e forcooling electric power transformers

e the tubes with attached fins used to promote heat exchange between air and
the working fluid of an air conditioner.

Two common finned tube arrangements are shown in Figure (next slide)



ure: Schematic Of Typical Finned Tube Heat Exchangers



Different fin configurations are:

e Astraight fin is any extended surface that is attached to a plane wall. It may be
of uniform cross sectional area, or its cross sectional area may vary with the
distance x from the wall.

e An annular fin is one that is circumferentially attached to a cylinder, and its
cross section varies with radius from the centerline of the cylinder.

e The foregoing fin types have rectangular cross sections, whose area may be
expressed as a product of the fin thickness t and the width w for straight fins or
the circumference for annular fins.

¢ In contrast a pin fin, or spine, is an extended surface of circular cross section.

e Pin fins may also be of uniform or non-uniform cross section.
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Figure: Fin Configurations (A) Straight Fin Of Uniform Cross Section (B)
Straight Fin Of Non-Uniform Cross Section (C) Annular Fin (D) Pin Fin

In any application, selection of a particular fin configuration may depend on
space,

weight,

manufacturing and

cost considerations,

the extent to which the fins reduce the surface convection coefficient and
increase in the pressure drop associated with flow over the fins.



A GENERAL CONDUCTION ANALYSIS

To determine the heat transfer rate associated with a fin, we must first obtain
the temperature distribution along the fin. We begin our analysis by performing
an energy balance on an appropriate differential element. Consider the
extended surface of Figure. The analysis is simplified if certain assumptions are

made.

Figure: Energy Balance for an Extended Surface



Assumptions

e Heat transfer is assumed to be in only one dimensional i.e., in the longitudinal (x)
direction, even though conduction within the fin is actually two dimensional.

The rate at which the energy is convected to the fluid from any point on the fin
surface must be balanced by the rate at which the energy reaches that point
due to conduction in the transverse ( y,z ) direction. However, in practice the fin
is thin and temperature changes in the longitudinal direction are much larger
than those in the transverse direction.

Steady state conditions are assumed.
e Thermal conductivity is assumed to be constant .
e Radiation from the surface is assumed to be negligible .

e Convection heat transfer coefficient is assumed to be uniform over the surface.



Applying the conservation of energy requirement to the differential element, we
obtain

qx 5§ qx+dx 3" dqconv

From Fourier's law we know that

dr
— kA &
9 “ dx

Where A_is the cross-sectional area, which may vary with x . Since the conduction
heat rate at x+dx may be expressed as

d
qx+dx =qx + qx dx
dx

It follows that

qura,xz—kAcd—T—ki Acd—T dx
dx dx dx



The convection heat transfer rate may be expressed as

dq

cony

=hdA (T-T,)

Where dA. is the surface area of the differential element.
Substituting the foregoing rate equations into the energy balance equation, we

obtain
df,dT) hdA o o
dx dx k dx
or

? A A
d]2’+ 1 dA, |dT [ 1 hdA, (T—Tw)=0
dx A dx Jdx A k dx

This result provides a general from of the energy equation for one dimensional
condition in an extended surface. Its solution for appropriate boundary
conditions would provide the temperature distribution, which could then be

used with Equation of Fourier’'s law of heat conduction to calculate the
conduction rate at any distance x.



Objectives

e The temperature distribution for rectangular fin and pin fin with various boundary
conditions is obtained from the general form of the energy equation for an

extended surface which we derived.
FINS OF UNIFORM CROSS SECTIONAL AREA

Consider the simplest case of straight rectangular and pin fins of uniform cross
section (Figures below). Each fin is attached to a base surface of temperature

T(0)=T, and extends into a fluid of temperature T,

P=2w+21
(@) A~wl

u—ﬁ}j

P=TlD
A=TCD74

Figure: Fins of Uniform Cross Section (a) Rectangular Fin (b) Pin Fin



For the prescribed fins,
e A_isaconstantand A .= Px,
e A.is the surface area measured from the base to x and

e Pisthe fin perimeter.

Accordingly, with g -0 and dﬁ:p , Governing Equation reduces to
dx dx
d*T hP
— T'-T )=0
dx* kA, : =)

To simplify this equation, we transform the dependent variable by defining the
excess temperature @s

O(x)=T(x)-T.



do dT

where, since T is a constant,—=— . Substituting
dx dx
dze_ngzo where mzzh_P
dxz kAc

Above equation is linear, homogenous, second order differential equation with
constant coefficients. Its general solution is of the form

0 (x) =C e G ens

To evaluate the constant C, and C, of this equation , it is necessary to specify
appropriate boundary conditions. One such condition may be specified in terms
of the temperature at the base of the fin (x=0)



6(0)=1,-T,=6,

The second condition, specified at the fin tip (x=L), may correspond to any one of
the four different physical conditions.

e Convection heat transfer from the fin tip

e Adiabatic condition at the fin tip

* Prescribed temperature maintained at the fin tip
e Infinite fin (very long fin)



Case B, Adiabatic condition at the fin tip
The assumption that the convective heat loss from the fin tip is negligible reduces to
the condition that the tip may be treated as adiabatic and we obtain

do

Al SRR T S
dx | _,

0=Cre"™ +Cre™™
Hb =C1+C2 at x=0

do _0 mC je™ —mCre™™ =0; C1e™ —Cre™™L = ¢

dx|._
ik C, =Cre’™"

O
14 emL

‘9b =C1+C1€2mL:>C1=



e e e
= + o O +
DT e byt s U B Sl e e
eZmL
0 e™ % Bo BN L e NP T (2 o
e : = -+
2mL —2mL b (o ’
6, 1I+e I+e O e T T i T
0 K em(x—L) 2 e—m(x—L)
‘9b e—mL _|_emL emL _I_e—mL
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Case A, Convection Heat Transfer From the Fin Tip
Applying an energy balance to a control surface about this tip, we obtain

dr
hA,|T(L)-T, |=—kA,—
Dl it
he(L)z—kﬁ
dx|._,



That is, the rate at which energy is transferred to the fluid by convection from
the tip must equal the rate at which energy reaches the tip by conduction
through the fin.

Thus,
6,=C,+C,
and
h(C,e™+C,e™ )=km(C,e ™ —C, e™ )

Solving for C, and C,, it may be shown, after some manipulation, that

6@ coshm(L—x)+(h/mk)sinhm(L—-Xx)
o, coshmL+(h/ mk )sinhmL




The form of this temperature distribution is shown schematically in Figure
below. Note that the magnitude of the temperature gradient decreases with
increasing x. This trend is an effect of the reduction in the conduction heat
transfer g,(x) with increasing x due to continuous convection loss from the fin

surface.
Ci;;)/chonv
7’;) s ///
" dT T ¢
qb_ qf A a;C_ M : :—> hAC [T(L) TOO]
6,
o(x)
0
[9) X L

Figure: Conduction And ConvectionIn A Fin Of Uniform Cross Section



Also, we need to find the total heat transferred by the fin. From Figure it is

evident that the fin heat transfer rate g, may be evaluated by applying Fourier's
law at the fin base. That is,

dT
—q,=—kA 2

L
iy dx

x=0

Hence, knowing the temperature distribution, g(x), g may be evaluated, giving

sinhmL+(h/ mk )coshmL
= JhPk A
1 ‘ coshmL+(h/ mk )sinhmL

Case B, Adiabatic condition at the fin tip

The assumption that the convective heat loss from the fin tip is negligible
reduces to the condition that the tip may be treated as adiabatic and we obtain

dé

b L
dx | _

L



Substituting and dividing by m , we then obtain

Ce" —C,e™ =0
Solving for C, and C, and substituting the results , we obtain

6@ coshm(L-x)

o, coshmL
Using this temperature distribution, the fin heat transfer rate is

q,=+hPkA,0 TanhmL

Case C, Prescribed temperature maintained at the fin tip

The assumption that the fin tip is maintained at a prescribed temperature
reduces to the following boundary condition

O(L)=6,



Substituting from Equation 3.13, we then obtain

9L=ClemL+C2 gy (3.27)

Using this expression with Equation 3.17 to solve for C, and C, and substituting the
results into Equation 3.13, we obtain

7 5 L
) _( %))smhmx+smhm(L—x) (3.28)
o, sinhmlL

Using this temperature distribution with Equation 3.20, the fin heat transfer rate is

V)
costh—(/)
7/ 3.29
g,=JhPkA, 6, ’ 3:29)

sinhmlL

Case D, Infinite fin (very long fin)

The very long fin situation is an interesting extension of the fin tip maintained at a
prescribed temperature.



As L—>x,0; -0 , the Equation 3.28 reduces to

6@ sinhm(L-x)
o, sinhmL
The above equation reduces to

0 sinhm(L-x) """ - e o™ —e " e™

. L —mL L —mL
o, sinhmL el el —eln

As I sw.e™ 50 , the Equation 3.31 reduces to

9 emL e—mx

The fin heat transfer rate given by Equation 3.29 reduces to

mL —mL

coshmlL e +e
qf=4/thAc L=«/thAc —e’”L 03

sinhm —e

As, L—>w,e™ —0 the Equation 3.33 reduces to

(3.30)

(3.31)

(3.32)

(3.33)



q,=\hPkA, 6,

coshml _ nPkA 6,% -6, JhPkA
sinhmlL e”

L

The foregoing results are summarizedin Table 3.1.

(3.34)

Table 3.1 Temperature Distribution and heat

Temperature Distribution

Fin Heat Transfer Rate

Case Tip condition Fai
g S
Convection heat transfer
coshm(L — x )+ (hfmk)sinhm (L - x) . NI'W sinhml +( hfmk)coshml
A
hA [T(L:] —T;] =~k al cositml + (kfmi) sinhmL g 4 cashml +  hfmic)sinkmi
dx 5=l
Adiabatic
coshm( L - x)
B Ji Pk A 8 Tankhml
de =1 cosh ml A6
dx a=l
Frescribed temperature [E'% ].smﬂz — .smﬁzm[i. _ xj coch _[E% ]
= b B
Rk A, 8
8(L)=8; sinhml A
D Infinite fin { £ = ) e ™ Gy R Pk 4,




Problem 3.1:

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface
of the rod is exposed to ambient air at 25°C with a convection heat transfer
coefficient of 100 W/m?ZK.

e Determine the temperature distributions along rods constructed from pure

copper, 2024 aluminium alloy and type AISI 316 stainless steel. What are the
corresponding heat losses from the rods?

e Estimate how long the rods must be for the assumption of infinite length to yield

an accurate estimate of the heat loss

S
L J

Figure:

h=100W/m?K

Known : A long circular rod exposed to ambient air.



Find :

e Temperature distribution and heat loss when rod is fabricated from copper, an
aluminum alloy, or stainless steel.

e How long rods must be to assume infinite length.

Assumptions:

e Steady state conditions

e One dimensional conduction along the rod

e Constant properties

e Negligible radiation exchange with surroundings
e Uniform heat transfer coefficient

Properties : At [T = (T,+T, )/2 = 62.5°C= 335 K] Copper: kK = 398 W/m.K;
Aluminium: k =180 me.K; Stainless steel, k = 14 W/m.K

Analysis:

1. Subject to the assumption of an infinitely long fin, the temperature
distributions are determined from equation 3.32, which may be expressed as,

1A e L S i Ve



where

P (4hj1/2
m=\| —— = At =
kA, kD
Substituting for h and D , as well as for the thermal conductivities of copper,
the aluminium alloy and the stainless steel, respectively, the values of m are
14.2, 21.2 and 75.6 m. The temperature distributions may then be
computed and plotted as follows.
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From these distributions, it is evident that there is little additional heat transfer
associated with extending the length of the rod much beyond 50, 200 and 300
mm, respectively, for the stainless steel, the aluminium alloy and the copper.

From Equation 3.34 the heat loss is,

1/2
q; =0,\[hPkA, :[100x7zx0.005><398><%(0.005)1 (100-25)
gy =83W

Similarly, for the aluminium alloy and stainless steel, respectively, the heat rates are
g=5.6 Wand 1.6 W

2. Since there is no heat loss from the tip of an infinitely long rod, an estimate of the
validity of the approximation may be made by comparing Equations 3.25 and 3.34.
to a satisfactory approximation, the expressions provide equivalent results if
TanhmL 2.65.Hence a rod may be assumed to be infinitely long if

1/2
: k A
LZLoozﬁ =2.65 <
m hP



For copper,

T
398 x (77/4) % (0.005) J e
100 x 7 x 0.005

B = 2.65(

Results for the aluminium alloy and stainless steel are [,=0.13m and L, =0.04m,
respectively.

Comments:

The above results suggest that the fin heat transfer rate may accurately be
predicted from the infinite fin approximation if mL > 2.65

However, if the infinite fin approximation is to accurately predict the
temperature distribution T(x) , a larger value of mL would be required. This
value may be inferred from Equation 3.32 and the requirement that the tip
temperature be very close to the fluid temperature. Hence, if we require that
, it follows that mL > 4.6, in which case 6(L)/ 6}, =exp(-mL)<0.01 L, 0.33,0.23 and
0.0¥ m for the copper aluminium alloy, and stainless steel, respectively.



Objectives

e The concept of fin efficiency, effectiveness is introduced in order to compare
various fin configurations.

e Also, the proper length of fin from practical point of view is presented.

FIN EFFICIENCY

Consider the surface of the plane wall
e attemperature 7,
e exposed to a medium at temperatureT,

e Heat s lost from the surface to the surrounding medium by convection with a
heat transfer coefficient of h.

Neglecting radiation, heat transfer from a surface area A is expressed as
Qconv =h ATy =T, ) Now let us consider a fin of constant cross sectional area A =
A, and length L that is attached to the surface with a perfect contact (Figure on
next slide).



(b) Surface with a fin

(a)Surface without fins Agn =2xwXL+wxt
=2XWXL

Figure : Fins Enhance Heat Transfer from a Surface by Enhancing Surface

e This time heat will flow from the surface to the fin by conduction.

e from the fin to the surrounding medium by convection with the same heat
transfer coefficient h.



The temperature of the fin will be T, at the fin base and gradually decrease
toward the fin tip.

Convection from the fin surface causes the temperature at any cross section to
drop somewhat from the midsection toward the outer surfaces.

However, the cross sectional area of the fins is usually very small, and thus the
temperature at any cross section can be considered to be uniform.

Also, the fin tip can be assumed for convenience and simplicity to be insulated
by using the corrected length for the fin instead of the actual length.

In the limiting case of zero thermal resistance or infinite thermal conductivity
(k — ), the temperature of the fin will be uniform at the base value of T,. The
heat transfer from the fin will be maximum in this case and can be expressed as

Qﬁn,max :hAﬁ'n (Tb _Too)



In reality, however, the temperature of the fin will drop along the fin, and thus
the heat transfer from the fin will be less because of the decreasing
temperature difference T(x) - 1., toward the fin tip, as shown in Figure (on next
slide)

To account for the effect of this decrease in temperature on heat transfer, we

define fin efficiency as
A 4 fin Actual heat transfer rate fromthe fin
fin

q AEDE ~ Ideal heat transfer rate fromthe fin
if the entire fin were at base temperature

where A, is the total surface area of the fin.

This relation enables us to determine the heat transfer from a fin when its
efficiency is known. For the cases of constant cross section of very long fins and
fins with insulated tips, the fin efficiency can be expressed as

4, _ﬂ/thAc(Tb—Tw)_l\/ﬁ_ 1

Tong i = == hA, (T,-T,) L\kA mL

fin,max




and

_ 4m _x/thAc(Tb—Tw)Tanth

ninsulated 0
Jfin,max hAﬁn (Tb_Too)
44 TanhmL |hP TanhmL
ninsulated V& qﬁn %l P L k Ac m L

Since A, =PL for fins with constant cross section. Above equation can also be
used for fins subjected to convection provided that the fin length L is replaced
by the corrected length L.

Fin efficiency relations are developed for fins of various profiles and are plotted
in Figures for fins on a plain surface and for circular fins of constant thickness.
The fin surface area associated with each profile is also given on each figure. For
most fins of constant thickness encountered in practice, the fin thickness t is too
small relative to the fin length L, and thus the fin tip area is negligible. Note that
fins with triangular and parabolic profiles contain less material and are more
efficient than the ones with rectangular profiles, and thus are more suitable for
applications requiring minimum weight such as space applications.



(b)Actual

Figure 3.9 Ideal And Actual Temperature Distribution In A Fin



An important consideration in the design of finned surfaces is the selection of
the proper fin length L

Normally the longer the fin, the larger the heat transfer area and thus the
higher the rate of heat transfer from the fin.

But also the larger the fin, the bigger the mass, the higher the price, and the
larger the fluid friction.

Therefore, increasing the length of the fin beyond a certain value cannot be
justified unless the added benefits outweigh the added cost.

Also, the fin efficiency decreases with increasing fin length because of the
decrease in fin temperature with length.

Fin lengths that cause the fin efficiency to drop below 60 percent usually
cannot be justified economically and should be avoided.

The efficiency of most fins used in practice is above 90 percent
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FIN EFFECTIVENESS

e Fins are used to enhance heat transfer, and the use of fins on a surface cannot be
recommended unless the enhancement in heat transfer justifies the added cost
and complexity associated with the fins.

e |n fact, there is no assurance that adding fins on a surface will enhance heat
transfer.

e The performance of the fins is judged on the basis of enhancement of heat
transfer relative to the no fin case.

The performance of fins expressed in terms of the fin effectiveness &5,  defined

as (See figure) .
fin

Eﬁn=
hA,(T,-T.)

Here, A, is the cross sectional area of the fin at the base and g, ;;, represents
the rate of heat transfer from this area if no fins are attached to the surface.



The physical significance of effectiveness of fin can be summarized below

An effectiveness of g5, = 1 indicates that the addition of fins to the surface does
not affect heat transfer at all. That is, heat conducted to the fin through the
base area A, is equal to the heat transferred from the same area A, to the
surrounding medium

An effectiveness of g, < 1 indicates that the fin actually acts as insulation,
slowing down the heat transfer from the surface. This situation can occur when
fins made of low thermal conductivity materials are used.

An effectiveness of €5, > 1 indicates that the fins are enhancing heat transfer
from the surface, as they should. However, the use of fins cannot be justified
unless g, is sufficiently larger than 1. Finned surfaces are designed on the basis
of maximizing effectiveness of a specified cost or minimizing cost for a desired
effectiveness.
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Figure: The Effectiveness Of The Fin

RELATION BETWEEN FIN EFFICIENCY AND FIN EFFECTIVENESS

The fin efficiency and fin effectiveness are related to the performance of the fin,
but they are different quantities. However, they are related to each other by

Ehn ™ L o 9 =nﬁ"hAﬁn(Tb_Too) =77ﬁn Aﬁn
g Quofin 1A, (T,~T,) hA, (T, -T,) A,




Therefore, the fin effectiveness can be determined easily when the fin efficiency is
known, or vice versa.

The rate of heat transfer from a sufficiently long fin or uniform cross section under
steady conditions is given by Equation 3.34. Substituting this relation into
Equation 3.40, the effectiveness of such a long fin is determined to be

4dg (T,-T,)JhPkA, | kP

E =
¥ qnoﬁn hAb (Tb _Too ) hAc

Since A.= A, in this case. We can draw several important conclusions from the fin
effectiveness relation above for consideration in the design and selection of the
fins

=  The thermal conductivity k of the fin material should be as high as possible. Thus it
is no coincidence that fins are made from metals, with copper, aluminum, and iron
being the most common ones. Perhaps the most widely used fins are made of
aluminum because of its low cost and weight and its resistance to corrosion.



= The ratio of the perimeter to the cross sectional area of the fin P/A_should be
as high as possible. This criterion is satisfied by thin plate fins or slender pin fins

= The use of fins is most effective in applications involving low convection heat
transfer coefficient. Thus, the use of fins is more easily justified when the
medium is a gas instead of a liquid and the heat transfer is by natural
convection instead of by forced convection. Therefore, it is no coincidence that
in liquid-to-gas heat exchangers such as the car radiator, fins are placed on the
gas side.

When determining the rate of heat transfer from a finned surface, we must
consider the unfinned portion of the surface as well as the fins. Therefore, the
rate of heat transfer for a surface containing n fins can be expressed as

qtotal,ﬁn ¥ qunfm +qﬁn e hAunﬁn(Tb _Too )+nﬁnAﬁn(Tb _Too)

qtotal,ﬁn =h(Aunfin + nﬁnAﬁn )(Tb _Too)



We can also define an overall effectiveness for a finned surface as the ratio of the

total heat transfer from the finned surface to the heat transfer from the same
surface if there were no fins,

o o A _ h(Au,,ﬁ,,+77ﬁnAﬁn)(Tb_Tw)

5 qno fin h Ano fin (Tb e Too)

where

" A,siniS the area of the surface when there are no fins,

" Ag,is the total surface area of all the fins on the surface, and

" A is the area of the unfinned portion of the surface (Figure: next slide_.

Note that the overall fin effectiveness depends on the fin density (i.e. number of
fins per unit length) as well as the effectiveness of the individual fins. The overall

effectiveness is a better measure of the performance of a finned surface than the
effectiveness of the individual fins.
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Figure Various Surface Areas Associated With A Rectangular Surface With Three Fins



PROPER LENGTH OF THE FIN

An important step in the design of a fin is the determination of the appropriate
length of the fin once the fin material and the fin cross section are specified.

You may be tempted to think that the longer the fin, the larger the surface area
and thus the higher the rate of heat transfer. Therefore, for maximum heat
transfer, the fin should be infinitely long.

However, the temperature drops along the fin exponentially and reaches the
environment temperature at some length.

The part of the fin beyond this length does not contribute to heat transfer since it
is at the temperature of the environment, as shown in Figure.

Therefore, designing such an “extra long” fin is out of question since it results in
material waste, excessive weight, and increased size and thus increased cost with
no benefit in return (in fact, such a long fin will hurt performance since it will
suppress fluid motion and thus reduce the convection heat transfer coefficient).



Therefore, fins that are so long that the temperature approaches the environment
temperature cannot be recommended

F 3

0 X ¥
High heat Low heat 1 No heat
transfer transfer 'transfer

______________T"_____ _________

P

Figure Temperature Drop along the Fin



To get a sense of proper length of a fin, we compare heat transfer from a fin of
finite length to heat transfer from an infinitely long fins under the same
conditions. The ratio of these two heat transfers is heat transfer ratio

d _ TPEA (LT )Tt
qnoﬁn W(n _Tm)

The values of Tanh mL are evaluated for some values of mL and the results are
given in Table.




Table: The variation of heat transfer from a fin relative to that from
an infinitely long fin

il TankmlL
0.1 0.1
0.2 0,157
0.5 0462
1.0 07762
1.5 0.305
2.0 0,964
2.5 0,957
2.0 0,935
4.0 0,955
5.0 1.000




We observe from the table that heat transfer from a fin increases with mL
almost linearly at first, but the curve reaches a plateau later and reaches a value
for the infinitely long fin at about mL=5.

Therefore, a fin whose length is L=m/5 can be considered to be an infinitely long
fin.

We also observe that reducing the fin length by half in that case (from mL=5 to
mlL=2.5) causes a drop of just 1 percent in heat transfer.

We certainly would not hesitate sacrificing 1 percent in heat transfer
performance in return for 50 percent reduction in the size and possibly the cost
of the fin.

In practice, a fin length that corresponds to about mlL=1 will transfer 76.2
percent of the heat that can be transferred by an infinitely long fin, and thus it
should offer a good compromise between heat transfer performance and the fin
size.



Optimization of fin thickness

dy
hA. 0,

& = Effectiven ess =

For infinitely long fin approximate € is given as

gz\/k:P A B e N SR
hA

Assume that the fin volume is fixed and try to maximize the heat transfer
from the base

Volume = ILtW Assume that the fin width is known

O = hPkAB, tanh ml



Optimization of fin thickness

P=2W +2t=2w; A=Wt

JhPKA = JhQW)k Wt = W~/2hk Nt

hp, [RWV _[2hV .,
AT kW

ml. =

O = O,W~2hk /1 tanh kh X/ (il

O = a~/t tanh bt "

oy

ot

To optimize thickness use:



Optimization of fin thickness

a tanh (bt_m)%t‘”z +at{l - tan® h(br”))@ br”j ~0

%tanh (br?)+ {1 - tan’ h(bt”)}(— %bjﬁ” ~0

Let b=

%tanh A+ {l—tan2 hA))(—%Aj =0

Solving forAgives A=1.42

1% 2/3 h 1/3 1 1/3 h -1/3
A — L~|— —
74 k W k



Problem 3.2:

Steam in a heating system flows through tubes whose outer diameter is D,= 3 cm
and whose walls are maintained at a temperature of 125°C. Circular aluminium
fins ( k = 180 W/m°C) of outer diameter D,= 6 cm and constant thickness t = 2mm
are attached to the tube, as shown in the Figure. The space between the fins is 3
mm, and thus there are 200 fins per meter length of the tube. Heat is transferred
to the surrounding air at 7, = 27°C, with a combined heat transfer coefficient of h
= 60 W/m? °C. Determine the increase in heat transfer from the tube per meter of
its length as a result of adding fins.

Figure

t=2mm

S=3mm
D




Known: Properties of the fin, ambient conditions, heat transfer coefficient,
dimensions of the fin.

Find: To find the increase in heat transfer from the tube per meter of its length as a
result of adding fins.

Assumptions:

1. Steady operating conditions exist.
2. The heat transfer coefficient is uniform over the entire fin surfaces.

3. Thermal conductivity is constant.
4. Heat transfer by radiation is negligible.

Analysis:

In the case of no fins, heat transfer from the tube per meter of its length is
determined from Newton's law of cooling to be,

Anp in =7DL =7 (0.03)(1) = 0.0942m”

Qnoﬁ'n :hAnofin (Tl; _TOO)



O jin = 60%0.0942(12527) = 554 W

The efficiency of the circular fins attached to a circular tube is plotted in Figure
3.21. Noting that L =%(D,— D,) =% (0.06 —0.03) = 0.015m in this case, we have

= L 0003+ (1j0.002
2

i 2 ~ 027
" 0.015

(L+%tj\/g: (0.015 + %(0'002)]\/(180)?8.002) =0.21

Hence, 77,,= 0.95.

A = 22((0.03)° = (0.015)° }+ 27(0.03)(0.002)
Az, =0.00462 m’

Qﬁn W nﬁn Qﬁnmax =3 nﬁn hAﬁn (Tb _TOO)

0}, =0.95(60)(0.00462)(125-27) =25.8W



Noting that the space between the two fins is 3 mm, heat transfer from the unfinned
portion of the tube is

Apin =7 DS = 7r(0.03)(0.003) = 0.000283 m*
Orsin = A (T, — T, ) = 60(0.000283) (125~ 27) = 1.66 W

Noting that there are 200 fins and thus 200 inter-fin spacings per meter length of the
tube, the total heat transfer from the finned tube becomes

Ororat fin = 1O + Ouin ) = 200(25.8+1.66) = 5492 W

Therefore, the increase in the heat transfer from the tube per meter of its length as a
result of the addition of fins is

Oincrease = Drotat, fin — o fin = 5492554 = 4938 W (per m of tube length )

Comments:

The overall effectiveness of the finned tube is
Qtotal,fin A 5492

gﬁn,ovemll ST

Qtotal ,no fin 554

That is, the rate of heat transfer from the steam tube increases by a factor of almost
10 as a result of adding fins. This explains the widespread use of the finned
surface.

=90.91




